
The Role of Spatial Orientation in Diagram Design
for Computational Thinking Development in K-8 Teachers

Jean Salac
salac@uw.edu

University of Washington
Seattle, WA, USA

Donna Eatinger
dmeatinger@uchicago.edu
University of Chicago

Chicago, IL, USA

Diana Franklin
dmfranklin@uchicago.edu
University of Chicago

Chicago, IL, USA

ABSTRACT
The worldwide push for computing education at younger ages re-
quires that teachers are prepared to deliver instruction that supports
all learners. Other discipline-based education research fields offer a
wealth of instructional scaffolds worthy of exploration in comput-
ing. One such scaffold drawn from math education is diagramming.
While diagrams are frequently employed in university computing,
little is known about its applications in K-8 (ages 6-14) computing.

To inform diagram design for K-8 computing, we investigated
how the spatial orientation of a diagram (horizontal or vertical)
influenced the extent to which K-8 teachers developed different
technological, pedagogical, and content knowledge (TPACK) of
computational thinking (CT) concepts, such as loops, condition-
als, and decomposition. We found that more teachers were able to
decompose a sequence of events when using a vertical diagram.
While teachers in both conditions were similarly able to describe
various CT concepts and aspects of TPACK, more teachers using
a vertical diagram made connections between concepts, whereas
more teachers using a horizontal diagram described concepts in
isolation. We hope this exploration will spur future work into dia-
gramming and more broadly, spatial reasoning in K-8 computing.

CCS CONCEPTS
• Social and professional topics → Computer science educa-
tion; Computational thinking; K-12 education.

KEYWORDS
diagrams, teacher professional development, computational think-
ing, TPACK, K-8, spatial reasoning
ACM Reference Format:
Jean Salac, Donna Eatinger, and Diana Franklin. 2023. The Role of Spatial
Orientation in Diagram Design for Computational Thinking Development
in K-8 Teachers. In Proceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1 (SIGCSE 2023), March 15–18, 2023, Toronto,
ON, Canada. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3545945.3569737

1 INTRODUCTION
With the global growth of computing education at younger ages [13],
it is critical that teachers are equipped to provide computing in-
struction that supports all learners. One way to support all learners

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SIGCSE ’23, March 15–18, 2023, Toronto, ON, Canada.
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9431-4/23/03.
https://doi.org/10.1145/3545945.3569737

is to provide them with sufficient scaffolding as they are introduced
to new concepts. Other discipline-based education research fields,
such as math [5, 23, 34], reading [4, 35] and science [23], are rich
with instructional scaffolds that can potentially be adapted for com-
puting. Diagramming is one such strategy. Although diagrams are a
staple in university computing [17], little is known about its use in
primary and secondary computing — how they should be designed,
which concepts are they appropriate for, how they support both
students and teachers, among other avenues for exploration.

To inform diagram design for primary and secondary computing,
we investigated two different orientations of a diagram, vertical
and horizontal, in a virtual professional development for teachers
of students ages 10-14. In particular, we focus on the following
research questions:

(1) How does diagram orientation influence the learning of de-
composition in teachers?

(2) How does diagram orientation influence the development of
technological pedagogical content knowledge (TPACK) in
teachers?

We found that more teachers were able to partially or fully de-
compose a sequence of events when using a vertical diagram, as
opposed to a horizontal diagram. Our results also revealed that
teachers in both conditions were similar in their project completion
rates, and their coverage of computational concepts and aspects of
TPACK. However, more teachers who used a vertical diagram made
connections between CT concepts, while more teachers who used
a horizontal diagram described concepts in isolation. The depth of
their understanding differed, suggesting connections to emerging
work on spatial reasoning in computing [20, 21, 24–27].

2 BACKGROUND
2.1 Matrix Taxonomy: Bloom’s for Computing
Fuller et al. proposed the Matrix Taxonomy [9], a two-dimensional
adaptation of Bloom’s taxonomy [2, 15] for computing. The two
dimensions are ‘Interpreting’, the ability to understand an existing
product, and ‘Producing’, the ability to design and build a product.
The levels in the ‘Producing’ dimension areApply and Create. In our
study, we ask teachers to Use (explore the existing code), Modify
(change the existing code), and Create (develop their own code) [16].
This enables teachers to demonstrate their ability to produce code,
with the Use–>Modify task at the Apply level and the Create task
at the highest ’Producing’ level.
2.2 SOLO Taxonomy
To ground our teachers’ understanding, we use the Structure of Ob-
served Learning Outcomes (SOLO) taxonomy. It arranges learning

https://doi.org/10.1145/3545945.3569737
https://doi.org/10.1145/3545945.3569737
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3545945.3569737


SIGCSE ’23, March 15–18, 2023, Toronto, ON, Canada. Jean Salac, Donna Eatinger, & Diana Franklin

outcomes by structural complexity [1]. The SOLO taxonomy is com-
prised of five hierarchical levels of understanding: (1) prestructural,
where nothing is known about the subject or task, (2) unistruc-
tural, where only one relevant aspect is known, (3) multistructural,
where several relevant independent aspects are known, (4) rela-
tional, where aspects of knowledge are integrated into a structure,
and (5) extended abstract, where knowledge is generalized into a
new domain.

Scholars have employed the SOLO taxonomy to classify student
responses. For example, Lister et al [19] compared responses to
“explain in plain English questions" from students and educators.
They found that most educators demonstrated extended abstract
responses, while most students only demonstrated relational and
multistructural responses. Similarly, we used the SOLO taxonomy
to categorize teacher interview responses.

2.3 TPACK Model
TPACK is a framework for teacher knowledge for technology inte-
gration [14]. It describes the interactions of three critical bodies of
knowledge: content, pedagogy, and technology. Pedagogical con-
tent knowledge (PCK) is the knowledge teachers have about their
content and the best ways to teach it [11]. Technological peda-
gogical knowledge (TPK) is the knowledge teachers have of how
teaching and learning can change when technology is used in par-
ticular ways [14]. Technological content knowledge (TCK) is the
knowledge teachers have of how technology and content influence
and constrain each other [14]. Lastly, TPACK is the knowledge
teachers have of the representation of concepts using technology,
the pedagogical techniques that use technology in constructive
ways to teach content, and the difficulties students face when learn-
ing and how technology can help redress them [14].

The TPACK model has been used by scholars to analyze the
different funds of knowledge of K-12 CS teachers. For example,
Giannakos et al. used TPACK to examine the abilities and needs of
a national sample of teachers in upper secondary education [10].
Vivian and Falkner utilized TPACK to study teachers’ contributions
to an online teacher professional development [36]. In this study,
we also leveraged the TPACK model to characterize the knowledge
expressed by teachers in their interviews.

2.4 Learning Strategies
Numerous visual computing learning strategies, such as tracing [18]
and diagramming [6, 17] have been found to be effective at the
university level [7]. However, strategies in the university setting
are unlikely to directly translate in the K-8 setting. Students at
that age may not be able to self-regulate their learning as well as
university students, and also learn computing in vastly different
contexts from university students.

Other discipline-based education research (DBER) fields provide
insights into diagramming learning strategies for the primary and
secondary setting. Timelines [4] and Venn diagrams [35] scaffold
the organizing of key concepts and the understanding of larger
themes. The “Draw-It" Problem Solving strategy supports students
with learning disabilities in solving word problems in math through
diagramming [34]. Concept maps and vee diagrams [5, 23] support
metalearning and problem-solving skills in math and science.

By comparison, prior work in learning strategies in K-8 comput-
ing, let alone diagramming strategies, is thin. Examples of K-8 learn-
ing strategies include Use–>Modify–>Create [16], PRIMM [33], and
TIPP&SEE [32]. The first provides more scaffolded, guided instruc-
tion for each concept, followed by a more open-ended task to en-
courage student agency and creativity. PRIMM guides teachers in
creating scaffolded activities in text-based programming languages
to encourage learning, while TIPP&SEE guides students through
previewing and deliberate tinkering of Scratch projects. While all
of these strategies have been shown to be effective, they are largely
procedural or text-based scaffolds.

This work extends prior research by investigating how the de-
sign of diagrams, drawn from work in university computing and
other DBERs, can support the development of computational think-
ing and TPACK in K-8 teachers, with the ultimate goal of practic-
ing this strategy with their students. In particular, we focused on
spatial orientation in diagram design, with promising new work
suggesting links between spatial reasoning and computing. Mar-
gulieux proposed Spatial Encoding Strategy Theory to explain the
relationship between spatial skill and STEM achievement [21]. At
the university level, spatial skills has been linked to computer sci-
ence success [20, 25–27]. At the K-8 level, Parker et al. found that
students struggled more with code matching questions where an
animal moved in a grid vertically compared with horizontally [24].
3 METHODS
3.1 Study Context
This study took place with teachers from all over the United States,
where computing teachers frequently start as teachers of other sub-
jects and receive professional development to teach computing. In
Summer 2020, 45 teachers who taught students ages 10-14 partici-
pated in a virtual professional development (PD) for Scratch Encore,
an intermediate Scratch curriculum designed for students with a
year of introductory programming experience [8]. The curriculum
is comprised of modules covering computational thinking concepts
such as repetition, conditionals, and decomposition [28–30].

The PD covered one module per week, with a 30 minute syn-
chronous introduction, an hour-long coding session in groups of
4-6, and teachers working through the materials asynchronously
between the two sessions. All materials were adapted for virtual
instruction using Google forms and slides.

Each module follows a Use–>Modify–>Create structure, where
a concept is introduced using example code before open-ended
exploration [16]. In Scratch Encore, the Use–>Modify step is further
scaffolded with the TIPP&SEE learning strategy [32]. Finally, they
are prompted to create an open-ended artifact incorporating the
new concept.

In this study, we focus on a module called Decomposition by
Sequence. It was designed based on the Decomposition learning tra-
jectory [28] and targeted Scratch programming language-specific
constructs. In particular, this module focuses on a sequence of
events across multiple sprites, where different actions were trig-
gered by between-sprite interactions for which Scratch provides
sensing blocks (touching color or touching sprite). The learning
goals for this module are for students to learn to (1) decompose a
sequence of events into separate actions and their triggering events,
(2) create scripts that will trigger the action of one sprite dependent



The Role of Spatial Orientation in Diagram Design for Computational Thinking Development in K-8 Teachers SIGCSE ’23, March 15–18, 2023, Toronto, ON, Canada.

on the action of another sprite, (3) use sensing blocks to stop and
start actions, and (4) plan and create an animation based on a set of
events and actions.

In this module, we designed horizontal and vertical versions of a
diagram to scaffold the learning of these goals. As prior experience
can influence howmuch scaffolding they would need, teachers were
assigned to either the horizontal (H) or vertical (V) condition such
that each condition would have the same median years of computer
science teaching experience. 22 teachers were in the horizontal
condition, with a median of 4 years of experience. 23 teachers were
in the vertical condition, with a median of 4.25 years.

To fill out the diagram in the “Use/Modify" worksheet for this
module, teachers first watched a video that demonstrated a com-
plete Scratch project with a sequence of events. Based on the video,
they completed a partially-filled out diagram that decomposes the
sequence of events. After they filled out the diagram, the worksheet
directed them to an incomplete version of the demonstrated Scratch
project, which they explored using the TIPP&SEE learning strategy.
Using their completed diagrams to support their coding, teachers
were then prompted to modify the project such that it worked like
the demonstrated project. In the “Create" worksheet, teachers were
prompted to plan their culminating projects with the help of an
empty fill-in-the-blank diagram (Figures 1 & 2).
3.2 Diagram Design
In this module, the objective of the diagram was to scaffold the
decomposition of the conditional interactions between multiple
sprites. From prior iterations of Scratch Encore, teachers reported
struggles with previous diagrams. Based on teacher feedback, class-
room observations, and prior student work, we revised the diagram,
with existing CS diagrams (e.g. control flow diagrams) serving as a
subject matter guide and diagramming strategies from math educa-
tion serving as a pedagogical guide [34]. This diagram underwent
several rounds of revision, with feedback from researchers and
practitioners at each round.

For this study, we designed two orientations of the revised dia-
gram — horizontal and vertical. The horizontal version, which is
read from left to right, is similar to the way students would read
natural language text in English and aligns with typical represen-
tations of timelines [4]. In contrast, the vertical version, which is
read from top to bottom, is akin to the way programs are read and
aligns with the code structure of Scratch.

Figures 1 and 2 depict examples of the vertical and horizontal
“Create" diagrams, respectively. The blue boxes represent student
input. In this example, a student wants to program a sequence of
events from a soccer game where a player runs and kicks a ball
into a goal with spectator cheers. The events in this interaction are
when the player touches the ball and when the ball touches the
goal. The player’s actions are to run until they touch the ball. The
ball’s actions are to stay still until the player touches it, after which
it rolls until it touches the goal. The goal’s actions are to stay still
until the ball touches, after which it plays a celebratory sound. The
scripts for the player, ball, and the goal are shown in Figure 3.

3.3 Data Analysis
3.3.1 Diagram Worksheets. We analyzed teachers’ diagrams in
the “Create" worksheet for evidence of decomposition, where they

Figure 1: Vertical Diagram with Complete Decomposition

Figure 2: Horizontal Diagram with No Decomposition

Figure 3: Code for Each Example Sprite

planned their own final project. The first two authors developed
a coding manual of categories that described the extent to which
they decomposed the sequence of events — separated all the events
and actions (complete decomposition), separated at least one event
or action (partial decomposition), or did not separate events and
actions (no decomposition). Figure 1 depicts a complete decomposi-
tion, with the events (e.g. “when Player touches Ball") to the left of



SIGCSE ’23, March 15–18, 2023, Toronto, ON, Canada. Jean Salac, Donna Eatinger, & Diana Franklin

the timeline and actions (e.g. “Runs") to the right. Figure 2 depicts
no decomposition with the events and actions together below the
timeline (e.g. “Ball stays still until it touches the Player").

The manual also classified characteristics of responses in the
“event" and “action" boxes in the diagram. In Figure 1, the event
boxes are the boxes to the left of the vertical timeline while the
action boxes are to the right. In Figure 2, the event boxes are the
boxes above the horizontal timeline while the action boxes are
below. Correct responses would be writing one event in an event
box (e.g. box in the dotted red circle from Figure 1) and one action
in an action box (e.g. box in the solid red circle from Figure 1).
Common incorrect responses included writing in an action box: an
event (e.g. box in the dotted red circle from Figure 2), a sprite (e.g.
if they wrote “Player" in that box), and multiple actions (e.g. if they
wrote “stays still then rolls" in that box).

The first two authors coded each worksheet separately and
then resolved any disagreements through discussion following the
consensus-based model from Hammer and Berland [12]. To see if
there was a dependence between condition and the extent of de-
composition, we used a Chi-square test of independence; we report
𝜒 and 𝑝 values. This test, however, was not appropriate for their
response characteristics as the expected value for each cell was less
than five [22].

3.3.2 Scratch Projects. Features of teachers’ culminating “Create"
Scratch projects were automatically scraped to determine if they
fulfilled the assigned requirements. There were five requirements:
adding a new backdrop, using at least 3 sprites, using the go to x:
y: block in at least 2 sprites (for initialization), animating at least
2 sprites, and using a repeat until or wait until blocks to
program a sequence of events. Additionally, there were two extra
extensions that teachers could complete: adding a new event to
a third sprite and using a sound block. Lastly, we also checked if
teachers used broadcast/receive blocks as it was a frequently
mentioned theme in interviews. To see if there was a statistically-
significant difference between the two conditions’ completion rates,
we conducted the Chi-squared test on proportions, from which we
provide 𝜒 and 𝑝 values.

3.3.3 Semi-structured Interviews. At the end of the PD (1 month
after the module), retrospective semi-structured interviews were
conducted with some teachers to learn more about their mental
models of their final Scratch projects and to better understand to
what extent diagrams scaffolded their learning. 13 teachers in each
group (horizontal vs vertical) were interviewed for about 15-20
minutes and were selected based on availability. Teachers were
able to reference their completed diagrams and Scratch projects
throughout the interview. The interview protocol is in Table 1.

Interview transcripts were first open coded by the first two au-
thors to identify emerging themes. Based on these themes, a qualita-
tive coding manual was developed, covering CT concepts, the levels
in the SOLO taxonomy, and aspects of the TPACK framework (sec-
tion 2). The two authors coded each interview separately and then
resolved any disagreements through discussion. The Chi-square
test of independence was not appropriate to use on the themes
identified in the interviews as the expected value for each cell was
less than five, with some cells even being zero [22].

Topic Questions

Warm Up Can you show me what your project does?
Was this diagram helpful to you in planning your
project? What went well? What was confusing?
Do you have any suggestions for improvement?

Diagram Can you explain your thinking as you filled out this
diagram?
How did you fill it out for Sprite X?
How did you decide what to write in this box?
What went well?
What was confusing?
Can you explain how you used this diagram while
coding your Scratch project?
How did you program Sprite X?
How did you program event/action X?
What went well?
What was confusing?

TPACK How would you explain how your project works to
your students?
How would you explain how to fill out this diagram
to your students?
Do you think this diagramwould be helpful for your
students?
Do you have any suggestions for student-facing
diagrams?

Table 1: Teacher Interview Protocol
4 RESULTS
Wefirst present results from analyzing diagramworksheets and end-
of-module projects, followed with results from teacher interviews.

Finding 1: 78% of teachers in the vertical condition decomposed the
sequence of events in their diagrams, either completely or partially,
compared with 56% of teachers in the horizontal condition.
Figure 4 depicts the proportion of teachers who did not separate
events and actions, separated at least one event or action, and sepa-
rated all events and actions when decomposing a sequence of events.
A majority of teachers in the vertical condition either completely
or partially decomposed the sequence of events into its constituent
events and actions, while a majority of the teachers in the horizon-
tal condition did not decompose or only partially decomposed the
sequence of events. The dependence between condition and the
extent of decomposition, however, was not statistically significant
(𝜒 = 4.08, 𝑝 = .129).

Figure 4: DiagramWorksheet Features
Taking a closer look at the worksheets, we found that more ver-

tical teachers described one action in each action box (10 V vs 4 H)
and one event in each event box (12 V vs 8 H). This demonstrates



The Role of Spatial Orientation in Diagram Design for Computational Thinking Development in K-8 Teachers SIGCSE ’23, March 15–18, 2023, Toronto, ON, Canada.

a complete decomposition of the sequence of events. In contrast,
when filling out the action boxes, more teachers in the horizontal
condition wrote at least one event or sprite, more than one sequen-
tial action, and actions that did not belong to the sprite in that
row/column (Figure 5). This suggests partial or no decomposition
of the sequence of events. The mistakes that were more common
among the vertical teachers were idiosyncratic responses in the
action boxes, such as x-y coordinates or time, and writing at least
one sprite in an event box. The latter mistake could be interpreted
as incomplete events, as events in this module involve conditional
sprite interactions.

Figure 5: DiagramWorksheet Responses

Finding 2: Teachers in both conditions completed project require-
ments at similar rates.
Figure 6 shows the completion rates of project requirements and
extensions (adding third sprite with a new event and adding a sound
block). Chi-square tests on proportions revealed no statistically-
significant differences in the completion rates of any of the re-
quirements or extensions. The only exception is the sound block
extension, which vertical teachers were more likely to complete
(𝜒 = 3.91, 𝑝 = .0479). In addition to the stated project requirements
and extensions, we also analyzed the usage of broadcast/receive
blocks in their projects based on the information gathered during
teacher interviews. These blocks are commonly used for message
passing and synchronization in Scratch, and had not been intro-
duced in this module or prior lessons. While the difference was not
statistically significant, it is important to note that more horizontal
teachers used these blocks to program their final project, instead of
using the new repeat until or wait until blocks introduced in
this module.

Finding 3: When explaining their projects or diagrams, teachers in
both conditions were similar in the CT concepts they described.

Figure 7 details the number of teachers in each condition who
described each CT concept when prompted to explain their Scratch
projects or diagrams. While teachers in both conditions were simi-
lar in the CT concepts they detailed, it is interesting to note that
nearly twice as many teachers in the vertical condition brought up
decomposition, the focal CT concept in this module.

Finding 4: Teachers in both conditions were similar in the different
types of knowledge in the TPACK model they expressed in interviews.

Figure 8 illustrates the number of teachers in each condition
who exhibited each aspect of TPACK. The two singular aspects of
TPACK, technological and content knowledge, were omitted from

Figure 6: End-of-Module Project Features

Figure 7: CT Concepts Described in Interviews

the graph; the former because none of the teachers described tech-
nological knowledge alone and the latter because all of the teachers
exhibited some level of content knowledge. A similar number of
teachers in both conditions exhibited different aspects of TPACK
(Figure 8).

The most commonly expressed types of knowledge were peda-
gogical knowledge (PK) and pedagogical content knowledge (PCK).
A teacher in our study exhibited their PK when describing how they
would pair struggling students with more advanced students for
peer instruction, while another teacher displayed their PCK when
drawing students’ attention to different events in a thinkaloud
explanation of their project. One teacher exhibited technology con-
tent knowledge, who explained that sprites in Scratch need a goto
x: y: block to initialize in the correct starting position. Six teach-
ers demonstrated technological pedagogical knowledge, such as a
teacher explaining XY coordinates before students learned them in
math so they can move their sprites in Scratch. Lastly, five teachers
even exhibited TPACK, demonstrating an intersection of technolog-
ical, pedagogical, and content knowledge. For example, one teacher
described making videos of them modeling their project, breaking
down the different events and actions, so that their students could
watch their explanations at their own pace.



SIGCSE ’23, March 15–18, 2023, Toronto, ON, Canada. Jean Salac, Donna Eatinger, & Diana Franklin

Figure 8: TPACK Aspects Described in Interviews

Finding 5: More teachers in the vertical condition described CT
concepts at the relational level (11 V vs 4 H) of the SOLO taxonomy.

Figure 9 displays the number of teachers who demonstrated an
understanding of CT concepts at each level of the SOLO taxonomy
(Section 2). The lowest level in the hierarchy, the prestructural level,
was omitted as all teachers knew at least one relevant concept. A
unistructural explanation consists of one relevant concept. Both
multistructural and relational explanations are comprised of several
concepts, but connections between concepts are made in relational
explanations.

Most teachers in the horizontal condition explained CT concepts
at the unistructural and multistructural levels, while the explana-
tions of most teachers in the vertical condition were at the mul-
tistructural and relational levels. An example of a unistructural
explanation would be a teacher in the horizontal condition who
described the conditional interaction in their project as “The first
person is saying that she needed to get the blue potion[...]And then
the elf lady says something else and then a little fairy drags over
and tries to get her potion." While their project consisted of blocks
corresponding to other concepts, they only described sequence. For
a multistructural example, a teacher in the horizontal condition
said, “When she touches the guitar, it would start playing[...]then
it would send out a message to the target and it would repeat until
the color red was touching that the brown of the boy’s shoes". They
described the concepts of events, sequence, loops, and synchro-
nization, but the concepts were specific to their project and not
integrated into a broader structure. In contrast, a relational example
would be from a teacher in the vertical condition: “Sprites are char-
acters that you can program to interact with each other in many
different ways...when a sprite reaches that position and comes in
contact with another sprite,[...]there’s going to be an action that
occurs when two sprites come in contact with each other." While
this teacher described fewer concepts than the teacher with the
multistructural explanation (only events and sequence), this teacher
linked the concepts into a larger structure.

5 DISCUSSION
For RQ1, our analysis of diagram worksheets revealed that most
teachers using the vertical diagrams either partially or completely
decomposed the sequence of events into their composite sprite ac-
tions and events. In the horizontal condition, most teachers either

Figure 9: SOLO Taxonomy Levels of Interview Responses

partially or did not decompose the sequence of events. While teach-
ers in each condition differed in the degree of decomposition in
their diagrams, they performed similarly in their Scratch projects,
completing requirements at similar rates. This result suggests that,
regardless of condition, teachers were able to produce code artifacts
at the highest ’Producing’ level of the Matrix Taxonomy, Create [9].
However, prior work has shown that students frequently create
with code that they do not fully understand [3, 31]. A similar phe-
nomenon may have occurred with the teachers in the horizontal
condition, given their responses to the diagram worksheets and
their unistructural and multistructural descriptions of CT concepts
in interviews based on the SOLO taxonomy.

For RQ2, we found that teachers in both conditions developed
some level of content knowledge, one of the pillars of TPACK.
They described CT concepts with similar frequency when asked
to explain their projects or diagrams. While we could not run sta-
tistics on the CT concepts described, it is important to note that
nearly double the number of teachers in the vertical condition men-
tioned decomposition, the key concept in this module. Teachers in
both conditions also exhibited other aspects of TPACK with similar
frequency, with the two most common aspects of TPACK being ped-
agogical and pedagogical content knowledge. Nonetheless, most
teachers in the vertical condition demonstrated deeper knowledge
of the CT concepts, either describing multiple concepts (multistruc-
tural) or drawing connections between several concepts (relational).
In contrast, most teachers in the horizontal condition described
concepts in isolation (unistructural or multistructural).

While our small sample size limited the suitability of quantita-
tive analysis, our results, combined with our qualitative analysis,
provided insights into diagram design for the learning of computa-
tional thinking concepts, such as decomposition and conditionals.
The reason for performance differences across different spatial ori-
entations may be further motivation for nascent research on spatial
reasoning in computing [20, 21, 24–27]. Most interestingly, our re-
sults with teachers exhibit a reverse pattern of Parker et al’s results
with students, who found horizontal easier than vertical movement
in coding questions [24]. This may be because of the different study
populations, nature of the task (code writing in our study vs reading
in [24]), the spatiality of language [37], or something else entirely;
further research would be needed to uncover the underlying rea-
sons. We hope that this study will lead to further research into
diagrams, and spatial reasoning more broadly, in K-8 computing.

ACKNOWLEDGMENTS
This project was funded by National Science Foundation (NSF)
Grant No. 1738758 and DGE-1746045.



The Role of Spatial Orientation in Diagram Design for Computational Thinking Development in K-8 Teachers SIGCSE ’23, March 15–18, 2023, Toronto, ON, Canada.

REFERENCES
[1] John B Biggs and Kevin F Collis. 1982. Evaluation the quality of learning: the

SOLO taxonomy (structure of the observed learning outcome). Academic Press.
[2] Benjamin S Bloom et al. 1956. Taxonomy of educational objectives. Vol. 1:

Cognitive domain. New York: McKay (1956), 20–24.
[3] Karen Brennan and Mitchel Resnick. 2012. New frameworks for studying and

assessing the development of computational thinking. In Proceedings of the 2012
annual meeting of the American Educational Research Association, Vancouver,
Canada, Vol. 1. 25.

[4] Kristy A Brugar and Kathryn Roberts. 2014. Timelines: An opportunity for
meeting standards through textbook reading. The Social Studies 105, 5 (2014),
230–236.

[5] AJ Cañas, P Reiska, M Åhlberg, and JD Novak. 2008. Concept mapping & vee
diagramming a primary mathematics sub-topic:“Time”. (2008).

[6] Kathryn Cunningham, Sarah Blanchard, Barbara Ericson, and Mark Guzdial. 2017.
Using Tracing and Sketching to Solve Programming Problems: Replicating and
Extending an Analysis of What Students Draw. In Proceedings of the 2017 ACM
Conference on International Computing Education Research (Tacoma, Washington,
USA) (ICER ’17). Association for Computing Machinery, New York, NY, USA,
164–172. https://doi.org/10.1145/3105726.3106190

[7] Katrina Falkner, Rebecca Vivian, and Nickolas JG Falkner. 2014. Identifying
computer science self-regulated learning strategies. In Proceedings of the 2014
conference on Innovation & technology in computer science education. ACM, 291–
296.

[8] Diana Franklin, David Weintrop, Jennifer Palmer, Merijke Coenraad, Melissa
Cobian, Kristan Beck, Andrew Rasmussen, Sue Krause, MaxWhite, Marco Anaya,
et al. 2020. Scratch Encore: The design and pilot of a culturally-relevant interme-
diate Scratch curriculum. In Proceedings of the 51st ACM technical symposium on
computer science education. 794–800.

[9] Ursula Fuller, Colin G Johnson, Tuukka Ahoniemi, Diana Cukierman, Isidoro
Hernán-Losada, Jana Jackova, Essi Lahtinen, Tracy L Lewis, Donna McGee
Thompson, Charles Riedesel, et al. 2007. Developing a computer science-specific
learning taxonomy. ACM SIGCSE Bulletin 39, 4 (2007), 152–170.

[10] Michail N Giannakos, Spyros Doukakis, Ilias O Pappas, Nikos Adamopoulos, and
Panagiota Giannopoulou. 2015. Investigating teachers’ confidence on technolog-
ical pedagogical and content knowledge: an initial validation of TPACK scales in
K-12 computing education context. Journal of Computers in Education 2, 1 (2015),
43–59.

[11] Sigrun Gudmundsdottir and Lee Shulman. 1987. Pedagogical content knowledge
in social studies. Scandinavian Journal of Educationl Research 31, 2 (1987), 59–70.

[12] David Hammer and Leema K Berland. 2014. Confusing claims for data: A critique
of common practices for presenting qualitative research on learning. Journal of
the Learning Sciences 23, 1 (2014), 37–46.

[13] Peter Hubwieser,Michail NGiannakos,Marc Berges, Torsten Brinda, Ira Diethelm,
Johannes Magenheim, Yogendra Pal, Jana Jackova, and Egle Jasute. 2015. A global
snapshot of computer science education in K-12 schools. In Proceedings of the
2015 ITiCSE on working group reports. ACM, 65–83.

[14] Matthew Koehler and Punya Mishra. 2009. What is technological pedagogical
content knowledge (TPACK)? Contemporary issues in technology and teacher
education 9, 1 (2009), 60–70.

[15] David R Krathwohl. 2002. A revision of Bloom’s taxonomy: An overview. Theory
into practice 41, 4 (2002), 212–218.

[16] Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce
Malyn-Smith, and Linda Werner. 2011. Computational thinking for youth in
practice. Acm Inroads 2, 1 (2011), 32–37.

[17] Raymond Lister, Elizabeth S Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders, Otto
Seppälä, et al. 2004. A multi-national study of reading and tracing skills in novice
programmers. In ACM SIGCSE Bulletin, Vol. 36. ACM, 119–150.

[18] Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further evidence of
a relationship between explaining, tracing and writing skills in introductory
programming. Acm sigcse bulletin 41, 3 (2009), 161–165.

[19] Raymond Lister, Beth Simon, Errol Thompson, Jacqueline L Whalley, and Chris-
tine Prasad. 2006. Not seeing the forest for the trees: novice programmers and
the SOLO taxonomy. ACM SIGCSE Bulletin 38, 3 (2006), 118–122.

[20] Anna Ly, Jack Parkinson, Quintin Cutts, Michael Liut, and Andrew Petersen. 2021.
Spatial Skills and Demographic Factors in CS1. In 21st Koli Calling International
Conference on Computing Education Research. 1–10.

[21] Lauren E Margulieux. 2020. Spatial encoding strategy theory: The relationship
between spatial skill and stem achievement. ACM Inroads 11, 1 (2020), 65–75.

[22] Mary L McHugh. 2013. The chi-square test of independence. Biochemia medica
23, 2 (2013), 143–149.

[23] Peter Akinsola Okebukola. 1992. Attitude of teachers towards concept map-
ping and vee diagramming as metalearning tools in science and mathematics.
Educational Research 34, 3 (1992), 201–213.

[24] Miranda C Parker, Leiny Garcia, Yvonne S Kao, Diana Franklin, Susan Krause, and
MarkWarschauer. 2022. A Pair of ACES: An Analysis of Isomorphic Questions on
an Elementary Computing Assessment. In Proceedings of the 2022 ACMConference
on International Computing Education Research V. 1. 2–14.

[25] Miranda C Parker, Amber Solomon, Brianna Pritchett, David A Illingworth, Lau-
ren E Marguilieux, and Mark Guzdial. 2018. Socioeconomic status and computer
science achievement: Spatial ability as a mediating variable in a novel model
of understanding. In Proceedings of the 2018 ACM Conference on International
Computing Education Research. 97–105.

[26] Jack Parkinson and Quintin Cutts. 2019. Chairs’ AWARD: investigating the
relationship between spatial skills and computer science. ACM Inroads 10, 1
(2019), 64–73.

[27] Jack Parkinson and Quintin Cutts. 2020. The effect of a spatial skills training
course in introductory computing. In Proceedings of the 2020 ACM Conference on
Innovation and Technology in Computer Science Education. 439–445.

[28] Kathryn M Rich, T Andrew Binkowski, Carla Strickland, and Diana Franklin.
2018. Decomposition: A k-8 computational thinking learning trajectory. In
Proceedings of the 2018 ACM Conference on International Computing Education
Research. 124–132.

[29] Kathryn M Rich, Diana Franklin, Carla Strickland, Andy Isaacs, and Donna
Eatinger. 2020. A Learning Trajectory for Variables Based in Computational
Thinking Literature: Using Levels of Thinking to Develop Instruction. Computer
Science Education (2020), 1–22.

[30] Kathryn M Rich, Carla Strickland, T Andrew Binkowski, Cheryl Moran, and
Diana Franklin. 2018. K–8 learning trajectories derived from research literature:
sequence, repetition, conditionals. ACM Inroads 9, 1 (2018), 46–55.

[31] Jean Salac and Diana Franklin. 2020. If they build it, will they understand it?
Exploring the relationship between student code and performance. In Proceedings
of the 2020 ACM conference on innovation and technology in computer science
education. 473–479.

[32] Jean Salac, Cathy Thomas, Chloe Butler, Ashley Sanchez, and Diana Franklin.
2020. TIPP&SEE: A Learning Strategy to Guide Students through Use - Mod-
ify Scratch Activities. In Proceedings of the 51st ACM Technical Symposium on
Computer Science Education (Portland, OR, USA) (SIGCSE ’20). Association for
Computing Machinery, New York, NY, USA, 79–85. https://doi.org/10.1145/
3328778.3366821

[33] Sue Sentance, Jane Waite, and Maria Kallia. 2019. Teachers’ Experiences of
using PRIMM to Teach Programming in School. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education. ACM, 476–482.

[34] Delinda van Garderen and Amy M Scheuermann. 2015. Diagramming word
problems: A strategic approach for instruction. Intervention in School and Clinic
50, 5 (2015), 282–290.

[35] Sharon Vaughn and Meaghan Edmonds. 2006. Reading comprehension for older
readers. Intervention in school and clinic 41, 3 (2006), 131–137.

[36] Rebecca Vivian and Katrina Falkner. 2019. Identifying Teachers’ Technological
Pedagogical Content Knowledge for Computer Science in the Primary Years. In
Proceedings of the 2019 ACM Conference on International Computing Education
Research. 147–155.

[37] Benjamin Lee Whorf. 2012. Language, thought, and reality: Selected writings of
Benjamin Lee Whorf. MIT press.

https://doi.org/10.1145/3105726.3106190
https://doi.org/10.1145/3328778.3366821
https://doi.org/10.1145/3328778.3366821

	Abstract
	1 Introduction
	2 Background
	2.1 Matrix Taxonomy: Bloom's for Computing
	2.2 SOLO Taxonomy
	2.3 TPACK Model
	2.4 Learning Strategies

	3 Methods
	3.1 Study Context
	3.2 Diagram Design
	3.3 Data Analysis

	4 Results
	5 Discussion
	Acknowledgments
	References

