
TIPP&SEE: A Learning Strategy to Guide Students through
Use–>Modify Scratch Activities

Jean Salac
∗
, Cathy Thomas

†
, Chloe Butler

†
, Ashley Sanchez

†
, & Diana Franklin

∗

∗
University of Chicago, Chicago, IL

†
Texas State University, San Marcos, TX, USA

{salac,dmfranklin}@uchicago.edu;{thomascat,cbb64,a_s1122}@txstate.edu

ABSTRACT
With the rise of Computational Thinking (CT) instruction at the el-

ementary level, it is imperative that elementary computing instruc-

tion support a variety of learners. A popular pedagogical approach

for this age group is Use–>Modify–>Create, which introduces a

concept through a more scaffolded, guided instruction before culmi-

nating in a more open-ended project for student engagement. Yet,

there is little research on student learning during the Use–>Modify

step, nor strategies to promote learning in this step. This paper in-

troduces TIPP&SEE, a metacognitive learning strategy that further

scaffolds student learning during this step. Results from an experi-

mental study show statistically-significant performance gains from

students using the TIPP&SEE strategy on nearly all assessment

questions of moderate and hard difficulty, suggesting its potential

as an effective CS/CT learning strategy.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion; Computational thinking; K-12 education;

KEYWORDS
learning strategy, computational thinking, Scratch, elementary ed-

ucation

ACM Reference Format:
Jean Salac

∗
, Cathy Thomas

†
, Chloe Butler

†
, Ashley Sanchez

†
, & Diana

Franklin
∗
. . TIPP&SEE: A Learning Strategy to Guide Students through

Use–>Modify Scratch Activities. In The 51st ACM Technical Symposium on
Computer Science Education (SIGCSE ’20), March 11–14, 2020, Portland, OR,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3328778.

3366821

1 INTRODUCTION
To provide equity in K-12 computing education, momentum has

been building for integrating computer science into elementary

school classrooms in school districts such as Chicago, San Francisco,

and New York City. However, many curricula and programming

platforms were designed for informal learning environments when

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGCSE 2020, March 11-14, Portland, OR, USA
© Association for Computing Machinery.

ACM ISBN 978-1-4503-6793-6/20/03. . . $15.00

https://doi.org/10.1145/3328778.3366821

there was very little opportunity for computational thinking ed-

ucation in formal education. These curricula and tools have been

tremendously successful. Research has shown informal learning

spaces to be effective at increasing awareness and engagement,

changing perceptions of computing, and building self-efficacy, es-

pecially for students from underrepresented communities in com-

puting [14, 24, 20, 23, 30].

While there has been tremendous success for some in the in-

formal space, the goal of integrating into schools is to translate

those successes to a much broader audience within the school day.

Merely providing the same instruction within the school day may

not result in the same outcomes. Providing access to computing cur-

ricula is just one part of the solution; CS/CT instruction must also

be effective for diverse students. Four broad categories of students

– students with disabilities, English language learners (ELL), stu-

dents of color, and students in poverty – face academic challenges

that may interfere with their success in a computing curriculum. It

is time to revisit programming languages, programming environ-

ments, and curricula with the goal of equitable learning outcomes.

More recent work has shown strong correlations between over-

all school academic performance and learning [26] in a computer

science curriculum built on open-ended projects designed using a

Constructionist pedagogical approach [13]. This points to the need

for scaffolding for some students.

The Use–>Modify–> Create [16] pedagogical approach has been

proposed to provide additional support, adding a Use–>Modify

task prior to an open-ended activity. In this Use–>Modify task,

students learn by example code. They are provided with something

that works to illustrate how to code a particular construct then

are first asked to perform some small modification before tackling

a more open-ended problem in which they apply that knowledge

to their own project. This paper introduces TIPP&SEE, a meta-

cognitive learning strategy that scaffolds student learning during a

Use–>Modify activity. In this paper, we investigate the following

overarching question: Does our new strategy, TIPP&SEE, improve
student learning of introductory CT concepts—events, sequence, &
loops? The contributions of this paper are to:

• introduce TIPP&SEE, a meta-cognitive learning strategy that

scaffolds student learning of learn-by-example Scratch activ-

ities, and

• show that TIPP&SEE results in statistically-significant im-

provements in performance on most medium- and high-

difficulty assessment questions.

In the next section, we present related work on learning strate-

gies for CS/CT, followed by the theoretical framework grounding

this research. In section 4, we provide a more in-depth description

Paper Session: Learning A SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

79

https://doi.org/10.1145/3328778.3366821
https://doi.org/10.1145/3328778.3366821
https://doi.org/10.1145/3328778.3366821

of TIPP&SEE, and in section 5, we describe our study. Question-

level results are presented in section 6, followed by a discussion of

their overall implications in section 7.

2 RELATEDWORK
In this section, we present related work on learning strategies for

CS/CT education more broadly, and in elementary education more

specifically.

There is a wealth of research in CS/CT learning strategies at the

university level, taking many forms and addressing various aspects

of CS/CT. Lister et al. found that students who had better skills at

reading, tracing, and explaining code tended to be better at writing

code [19, 18]. Falkner et al. also identified self-regulated learning

strategies such as diagramming and using design to understand a

problem or code [10]. In addition to programming-specific skills,

Bergin et al. identified cognitive (i.e. elaboration and organization),

metacognitive (i.e. critical thinking), and resource management

(i.e. effort regulation) strategies that were linked to success in a

computing curriculum [3]. Game development was also found to be

successful at promoting learning and engagement [1]. Nevertheless,

the strategies for this age group are unlikely to directly translate

to younger learners, who may not have the maturity necessary to

regulate their own learning.

Due to the relatively recent push for elementary CS/CT instruc-

tion, prior work in learning strategies for this age group is sparse

by comparison. Based on the idea that scaffolding increasingly

deep interactions will promote the acquisition and development

of CT, Lee et al developed the three-stage progression called Use–

>Modify–>Create [16]. Their approach provides more scaffolded,

guided instruction for each concept, followed by amore open-ended

project to engage students’ interest and creativity. Another strategy

is called PRIMM, which stands for Predict-Run-Investigate-Modify-

Make [28]. PRIMM guides teachers in creating scaffolded activities

in text-based programming languages to encourage learning, espe-

cially for struggling students.

TIPP&SEE adds to this growing body of work in the following

ways: (1) it provides additional scaffolding in the Use –> Modify

step of Use –> Modify –> Create to better promote learning for

struggling students, and (2) it is a learning strategy designed specif-

ically for use with Scratch, a widely-used programming language

at the elementary level [11].

3 THEORETICAL FRAMEWORK
3.1 CS Education Pedagogy
As with other subjects, including literacy [5, 29], computer science

education researchers disagree on whether the best approach is

to use open-ended, exploratory experiences or direct instruction.

Papert [13], in his work on constructionism, posited that individ-

uals learn best when they are constructing an artifact for public

consumption, putting a premium on self-directed learning. This

inspired Scratch to create a repository of projects which students

can "remix" (copy and modify). Critics argue that open-ended ex-

ploration of such environments may not lead to immediate un-

derstanding of the concepts behind what they produce [4], espe-

cially compared to a more direct instruction approach [17]. On the

other hand, an overly structured approach can dissuade students

from continuing in programming courses, especially female stu-

dents [32]. A more moderate approach is informed by seeking the

Zone of Proximal Flow [2], a combination of Vygotsky’s Zone of

Proximal Development theory [31] with Csikszentmihalyi’s ideas

about Flow [9]. The Zone of Proximal Flow refers to learning ex-

periences that are not too challenging as to overwhelm students,

but not too easy as to lead to little learning. One such moderate

approach is Use–>Modify–>Create [16], which TIPP&SEE extends

to better support diverse learners.

3.2 Reading Comprehension Strategies
Learning to program relies heavily on reading comprehension at

several stages in the learning process – reading (a) individual in-

structions, (b) a sequence of instructions provided as an example or

starting code, (c) one’s own partially-completed code, or (d) one’s

completed but incorrect code. Just as in reading, it is not enough

to decode the letters into words; to succeed, the student needs to

make meaning of the sequences of words into instructions (like

sentences) and the sequences of instructions into functions or pro-

grams (like paragraphs). There are several existing evidence-based

reading comprehension strategies that may have connections to

programming, in particular previewing and text structure.

Previewing [15, 21] helps students set goals for reading and

activates prior knowledge. When reading example code containing

a new concept, students might scan the code to quickly identify

familiar and unfamiliar concepts. They could think about their prior

knowledge of the concepts, predict how the new concept might

work, and inspect the syntax of the new concept.

Text structure [12, 33] prepares students to recognize disciplinary-

specific text structures and use this knowledge to plan for reading

and guide comprehension. In CS, programming languages and en-

vironments have specific structures that students must be able to

discover to comprehend code and must be able to differentiate as

they learn new languages and environments.

We drew from these reading comprehension strategies in design-

ing TIPP&SEE, which will be discussed in more depth in the next

section.

4 TIPP&SEE LEARNING STRATEGY
TIPP&SEE (Figure 1) is a learning strategy that scaffolds student

exploration of provided programs for Use–>Modify activities. The

strategy is specifically designed for use with Scratch, a popular

programming language and development environment used in ele-

mentary schools [11].

Inspired by previewing strategies, the first half, TIPP, guides
students in previewing different aspects of a new Scratch project

before looking at any code. As a last step, they run the code with

very deliberate observations of the events and actions that occur.

The second half, SEE, draws from text structure strategies. SEE pro-

vides a roadmap for finding code in the Scratch interface (clicking

on the sprite and finding the event) and proceduralizes the process

by which they can learn how code works by methodical exploration

(deliberate tinkering).

Paper Session: Learning A SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

80

Figure 1: TIPP&SEE Learning Strategy

5 METHODS
5.1 Experimental Design
Fifteen teachers were recruited from a large, urban school district

and underwent the same professional development to teach the

Scratch Act 1 curriculum to 4th grade students (ages 9-10). A total

of 16 classrooms participated in the study, including six of bilin-

gual classrooms. Teachers were randomly assigned to either the

TIPP&SEE or the control condition, resulting in five English-only

and three bilingual classrooms in each condition. Treatment class-

rooms used TIPP&SEE worksheets, whereas control classrooms

used worksheets that introduced the overall project and modify

task without stepping students through the protocol. Lessons were

taught by the teacher and assisted by an undergraduate CS student.

After excluding students who switched schools or were chronically

absent, there were a total of 96 and 88 students in the control and

TIPP&SEE condition, respectively, for a total of 184 students.

5.2 Scratch Act 1
Within a semester (approximately 5 months), students completed

Scratch Act 1 [27], an introductory computational thinking (CT)

curriculum modified from the Creative Computing curriculum [7]

consisting of three modules: Sequence, Events, and Loops. Each

module begins with Use/Modify project(s) and culminates in a Cre-

ate project (see Table 1). All curriculum materials and assessments

were available in English and Spanish.

Module Project Use-Modify-Create

Sequence Name Poem Use/Modify

Ladybug Scramble Use/Modify

5-Block Challenge Create

Events Events Ofrenda Use/Modify

About Me Create

Loops Build a Band Use/Modify

Interactive Story Create

Table 1: Scratch Act 1 Modules
5.3 Assessments
Students took two pen-and-paper assessments, one each after Mod-

ule 2 (events & sequence) and Module 3 (loops). Each 20-30 minute

assessment consisted of multiple-choice, fill-in-the-blank and open

response questions.

Assessment design was guided by the Evidence-Centered Design

Framework [22]. Domain analysis was informed by the CS K-12

Framework and Rich et al’s K-8 learning trajectories for elementary

computing [25]. These overarching goals were narrowed in domain

modeling to identify specific knowledge and skills desired.

The questions were designed by a team of CS and education

researchers and practitioners. Questions were then evaluated by

more practitioners and a reading comprehension expert, and tested

with students from the previous school year for face validity.

In addition, item difficulty (P) and item discrimination (D) values

were calculated for each question (see Tables ??& ??). Item difficulty

is the proportion of students who answered the question correctly—

the higher the item difficulty value, the easier the question is. Item

discrimination is a measure of how well a question differentiates

among students on the basis of how well they know the material

being tested—the higher the item discrimination value is, the better

the question is at differentiating students [8].

Cronbach’s alpha (α) was also calculated for internal reliability

between questions on the same topic. Between the questions and

sub-questions on both assessments, there were 5 items on events

(α=.72), 4 items on sequence (α=.7), and 9 items on loops (α=.85). A
question with parallel loops was excluded in the reliability calcula-

tion because its inclusion lowered the the reliability of the loops

questions (α=.82), suggesting that it was not testing the same con-

cepts as the other questions. An understanding of the concept of

parallelism, instead of loops, was likely more crucial to answering

this question correctly.

5.4 Data Analysis
The assessments were graded by two researchers to ensure relia-

bility. To see if TIPP&SEE had an influence on their assessment

performance, the ANOVA F-test was used. The ANOVA F-test re-

turns a p-value; for this study, p < .05 is statistically significant

(see Table 2). To handle the imbalance between groups, Type 3 Sum

of Squares was used. Free-response questions were qualitatively

coded by two researchers with a Fleiss’ Kappa inter-rater reliability

of at least 80%.

The eta squared (η2) effect size was also calculated. η2 measures

the proportion of the total variance in a dependent variable (DV)

that is associated with the membership of different groups defined

by an independent variable (IV) [6]. For example, if an IV has a η2

of 0.25, that means that 25% of a DV’s variance is associated with

that IV.

Paper Session: Learning A SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

81

Question P D F (1, 184) η2

Sequence & Events Assessment

Q1 .89 .27 4.76* .025

Q2a .65 .67 2.95 –

Q2b .63 .65 2.86 –

Q3 .60 .29 7.27** .038

Q4 .8 .4 3.95 –

Q5 .89 .37 2.87 –

Q6 .86 .69 6.86 ** .036

Q7a .78 .41 10.93** .056

Q7b .81 .67 10.93** .056

Loops Assessment

Q1 .92 .48 7.92** .042

Q2 .69 .55 17.26** .087

Q3 .73 .61 36.9** .17

Q4 .65 .48 25.9** .13

Q5a .92 .48 11.8** .061

Q5b .7 .65 13.8** .071

Q5c .7 .62 13.8** .071

Q6a .86 .19 7.49** .039

Q6b .41 .13 1.01 –

Q7 .84 .51 8.57** .045

EC .17 .37 3.59 –

* p < .05, ** p < .01

Table 2: Item Difficulty, Discrimination, & ANOVA F-Test

6 RESULTS
We begin with question-level results. There were 7 questions in the

events & sequence assessment and 8 questions in the loops assess-

ment. Overall results and implications are discussed in Section 7.

6.1 Events & Sequence
In the Events & Sequence assessment, Q1-3 asked about events,

while Q4-6 asked about sequence. Q7 had two sub-questions; the

first asked about events, and the second asked about sequence.

6.1.1 Q1-3: Events Triggering Scripts. Q1 asks students to identify

the event that triggered one action block. Students in both condi-

tions performed similarly well in Q1, with 94.3% of TIPP&SEE and

84.5% of the control students answering correctly. However, there

was a statistically-significant difference in performance (Figure 2).

Q2 showed students a stage with two sprites saying different

things after the green flag was clicked and asked which script ran

for each sprite in two parts. Around 70% of TIPP&SEE students

answered both parts correctly, compared with around 58% of the

control students. However, this difference was not statistically sig-

nificant.

Q3, a more advanced question, asks students to identify a multi-

block script triggered by the when sprite clicked event. TIPP&SEE
students also outperformed the control students on Q3, with 69.7%

of them answering correctly, compared with 50.5% of the control

students (ee Figure 2). Closer inspection of the responses revealed

that the control students were more likely to select the options that

started with when green flag clicked, the event that students
were most familiar with (75% of the control students vs 40.66% of

the TIPP&SEE students).

Figure 2: Events Q1 & Q3 & Sequence Q6 & Q7 Results (left to right)

6.1.2 Q4 & Q5 Sequence Basics. Q4 and Q5 cover a basic under-

standing of sequence, asking students to identify the last block in a

sequence and the different orders of blocks in two scripts, respec-

tively. Over 70% of students in both conditions answered Q4 and Q5

correctly with no statistically-significant difference in performance,

suggesting that the curriculum sufficiently supports students in

learning the easiest concepts without any additional scaffolding.

6.1.3 Q6 & Q7 Free-Response on Events & Sequence. Q6 and Q7

both asked students to explain a script of 3 blocks in their own

words. Both questions had blank lines preceded by "First", "Next",

and "Last" to scaffold their answers; each line was worth 2 points.

Q6 was worth 6 points, while Q7 was worth 7 points because it

had an additional question asking about the event worth 1 point.

As shown in Figure 2, there were statistically-significant differ-

ences in performance on both Q6 & Q7 between the TIPP&SEE

and control students, suggesting that the additional scaffolding pro-

vided by TIPP&SEE encouraged a deeper understanding of events

& sequence.

Qualitative analysis further illuminated some patterns. TIPP&SEE

students were less prone than the control students to respond with

an incorrect sequence or missing blocks (Q6: 10.11% vs 18.75%; Q7:

11.24% vs 31.25%). They also provided more precise responses &

were less likely to leave out the block name or, if applicable, an

important parameter when describing blocks (Q6: 8.98% vs 27.08%;

Q7: 10.12% vs 16.66%).

Overall, the data from the free-response questions show that

students in the TIPP&SEE condition could demonstrate a more

sophisticated understanding of the blocks themselves, as well as

the CT concepts of events & sequence, than students in the control

condition.

6.2 Loops
The loops assessment comprised of seven questions (Q1-7) and

an extra credit question asking about nested loops, a concept not

explicitly covered in Scratch Act 1.

6.2.1 Q1 & Q2 Loop Basics. Q1 showed students a loop and asked

them how many times it would repeat. While students in both

conditions performed well with 94.4% of TIPP&SEE & 84.5% of

control students answering correctly, there was still a statistically-

significant difference (Figure 3).

Paper Session: Learning A SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

82

Figure 3: Loop Basics Q1 (left) & Q2 (right) Results

In Q2, students were shown 4 code snippets and asked which

snippet would cause the sprite to change costumes 3 times. One

code snippet was inspired by a common misconception observed

by teachers where students would wrap repeated blocks with a

repeat loop that had the same number of iterations as the number

of blocks. There were 2 correct answers; students received 2 points

for each correct answer and lost 1 point for each wrong answer

for a maximum of 4 points. TIPP&SEE students outperformed con-

trol students with mean of 3.2 points compared with 2.4 points

(Figure 3). Students in the control condition were more than twice

as likely as the students in the TIPP&SEE condition to choose the

common misconception option (43.75% vs 18.39%), supporting the

observations made by the teachers.

6.2.2 Q3 & Q4 Loop Unrolling. Q3 & Q4 both asked students to

unroll a repeat 3 loop with 2 blocks, but with different answer

choices. Q3 showed the blocks in the loop repeated 1,2,3 and 4

times, while Q4 had a "split loop" option – where the first block was

repeated 3 times followed by the second block repeated 3 times.

For Q3, 91.9% of TIPP&SEE students answered correctly, com-

pared with only 55.2% of the control students (Figure 4).

Similarly, 82.8% of TIPP&SEE students answered Q4 correctly,

in comparison to only 48.9% of the control students (see Figure

4). An analysis of common mistakes revealed that the TIPP&SEE

students who answered incorrectly tended to choose responses that

suggested a closer, but flawed, understanding of loops – 14.94% of

TIPP&SEE students chose the "split loop" option, compared with

12.5% of the control students. In contrast, 31.25% of the control

students selected the option where the blocks were repeated only

once, compared with only 2.29% of the TIPP&SEE students.

Taking Q1-4 in perspective, we find that the control students

displayed a more superficial understanding of loop functionality

compared with the TIPP&SEE students. While many control stu-

dents were able to answer the simplest question on repeat iteration

count, they struggled with the more advanced questions on loop

unrolling.

6.2.3 Q5 Loops within a Sequence. Q5 showed a script with a loop

and asked 3 sub-questions: (a) code in, (b) before, and (c) after the
loop. Part (a) was worth 4 points—students earned 2 points for

each correct block circled and lost 1 point for each incorrect block

circled; parts (b) and (c) were worth 1 point.

Figure 4: Loop Unrolling Q3 (left) & Q4 (right) Results

Figure 5: Loops in Sequence Q5 Results
TIPP&SEE students outperformed the control students on all

three parts, as shown in Figure 5. On part (a), TIPP&SEE students

scored a mean of 3.29 points, while the control students scored a

mean of 2.51 points. On parts (b) and (c), 82.8% of the TIPP&SEE stu-

dents answered correctly, compared with only 58.3% of the control

students.

6.2.4 Q6 Parallel Loops. Q6 asked students about the execution

of two sprites’ code: part (a) asked about a sprite with sequential

loops, while part (b) asked about a sprite with two loops in parallel.

For part (a), 93.1% of the TIPP&SEE students were able to cor-

rectly identify the sequential behavior, as opposed to 79.2% of the

control students. In contrast, students in both conditions strug-

gled with part (b) with only 44.8% of TIPP&SEE and 37.5% control

students answering correctly, suggesting the difficulty of parallel

execution for this age group. Results for both parts are shown on

Figure 6.

6.2.5 Q7 Free-Response on Loops. Q7, the free-response question
in the loops assessment, was similarly scaffolded to the ones in

the events & sequence assessment. In addition to the blank lines

preceded by the "First", "Next", and "Last", there was a blank where

students would fill in how many times the loop would repeat. This

blank was worth 1 point, while the other three blank lines were

worth 2 points each, for a total of 7 points.

As indicated on Figure 7, TIPP&SEE students scored better on

this question with a mean of 6.36 points, in contrast to the mean of

5.44 points earned by the control students.

Paper Session: Learning A SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

83

Figure 6: Parallel Loops Q6 Results

Figure 7: Loops Q7 & Extra Credit Results

From qualitatively analyzing responses, we found that control

students demonstratedmore fundamental misconceptions of loops—

they were 4 times more likely to write the wrong number of itera-

tions, list an incorrect sequence of the blocks within the loop, or

leave out a block entirely (40.62% vs 9.19%). By comparison, the mis-

conceptions of the TIPP&SEE students were more nuanced. 12.64%

of TIPP&SEE students provided responses that described individual

blocks in the loop repeated in sequence, instead of the entire loop

repeated, compared with 10.42% of the control students.

6.2.6 Extra Credit Nested Loops. The final question on the loops

assessment was an Extra Credit (EC) question and asked about

nested loops, a topic not explicitly covered in the curriculum. Un-

surprisingly, students in both conditions similarly struggled with

this question (see Figure 7). The TIPP&SEE students performing

slightly better with 22.9% of them answering correctly, compared

with 12.5% of the control students. This difference, however, was

not statistically significant.

7 DISCUSSION
We now revisit our key research question: How does TIPP&SEE influ-
ence student learning of introductory CT concepts—events, sequence,
& loops?

Our findings show that students using TIPP&SEE outperformed

students who used an unmodified Use –> Modify –> Create ap-

proach on nearly all questions of moderate and hard difficulty.

TIPP&SEE students outperformed the control students in all but

Figure 8: Events & Sequence Assessment Results

Figure 9: Loops Assessment Results

the most basic questions on the events & sequence assessment (Fig-

ure 8; asterisks denote significance). Most students were able to

demonstrate a simple understanding of events & sequence with

just the scaffolding provided by Use –> Modify –> Create, but with

TIPP&SEE, they could demonstrate a more sophisticated under-

standing.

On the loops assessment, the TIPP&SEE students performed

better than the control students in almost all questions; only paral-

lelism and nested loops (which was not explicitly covered in the

curriculum) were beyond their grasp (Figure 9). This suggests that

while students are able to make significant learning gains with

TIPP&SEE, there is still room for improvement in the instruction

of parallelism.

As momentum continues to build for integrating CS/CT into ele-

mentary school classrooms, it is imperative that CS/CT instruction

be effective for diverse learners. A learning strategy like TIPP&SEE

provides some much-needed scaffolding for such diverse learners,

advancing not just equitable access, but also equitable outcomes in

elementary computing.

8 LIMITATIONS & FUTUREWORK
The students, teachers, and schools in this study were not ran-

domly sampled throughout the school district, nor school districts

nationwide or worldwide. In the future, a large-scale replication

TIPP&SEE in more school districts would provide further data on

its effectiveness.

9 ACKNOWLEDGEMENTS
This project was funded by National Science Foundation (NSF)

Grant No. 1660871 and DGE-1746045.

Paper Session: Learning A SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

84

REFERENCES
[1] Tiffany Barnes et al. “Game2Learn: building CS1 learning games for retention”.

In: ACM SIGCSE Bulletin 39.3 (2007), pp. 121–125.

[2] Ashok R Basawapatna et al. “The zones of proximal flow: guiding students

through a space of computational thinking skills and challenges”. In: Proceed-
ings of the ninth annual international ACM conference on International computing
education research. ACM. 2013, pp. 67–74.

[3] Susan Bergin, Ronan Reilly, and Desmond Traynor. “Examining the role of self-

regulated learning on introductory programming performance”. In: Proceedings
of the first international workshop on Computing education research. ACM. 2005,

pp. 81–86.

[4] John B Biggs and Kevin F Collis. Evaluating the quality of learning: The SOLO
taxonomy (Structure of the Observed Learning Outcome). Academic Press, 2014.

[5] Susan Chambers Cantrell. “Effective teaching and literacy learning: A look

inside primary classrooms”. In: The Reading Teacher 52.4 (1998), pp. 370–378.
[6] Jacob Cohen. Statistical power analysis for the behavioural sciences. 1988.
[7] Creative Computing. An introductory computing curriculum using Scratch.
[8] Linda Crocker and James Algina. Introduction to classical and modern test theory.

ERIC, 1986.

[9] Mihaly Csikszentmihalyi, Sami Abuhamdeh, and Jeanne Nakamura. “Flow”. In:

Flow and the foundations of positive psychology. Springer, 2014, pp. 227–238.
[10] Katrina Falkner, Rebecca Vivian, and Nickolas JG Falkner. “Identifying com-

puter science self-regulated learning strategies”. In: Proceedings of the 2014
conference on Innovation & technology in computer science education. ACM. 2014,

pp. 291–296.

[11] Louise P Flannery et al. “Designing ScratchJr: support for early childhood learn-

ing through computer programming”. In: Proceedings of the 12th International
Conference on Interaction Design and Children. ACM. 2013, pp. 1–10.

[12] Russell Gersten et al. “Teaching reading comprehension strategies to students

with learning disabilities: A review of research”. In: Review of educational
research 71.2 (2001), pp. 279–320.

[13] Idit Ed Harel and Seymour Ed Papert. Constructionism. Ablex Publishing, 1991.
[14] Yasmin Kafai et al. “Ethnocomputing with electronic textiles: culturally respon-

sive open design to broaden participation in computing in American indian

youth and communities”. In: Proceedings of the 45th ACM technical symposium
on Computer science education. ACM. 2014, pp. 241–246.

[15] Janette K Klingner and Sharon Vaughn. “Using collaborative strategic reading”.

In: Teaching exceptional children 30.6 (1998), pp. 32–37.

[16] Irene Lee et al. “Computational thinking for youth in practice”. In: Acm Inroads
2.1 (2011), pp. 32–37.

[17] Michael J Lee and Andrew J Ko. “Comparing the effectiveness of online learning

approaches on CS1 learning outcomes”. In: Proceedings of the eleventh annual
international conference on international computing education research. ACM.

2015, pp. 237–246.

[18] Raymond Lister, Colin Fidge, and Donna Teague. “Further evidence of a rela-

tionship between explaining, tracing and writing skills in introductory pro-

gramming”. In: Acm sigcse bulletin 41.3 (2009), pp. 161–165.

[19] Raymond Lister et al. “A multi-national study of reading and tracing skills in

novice programmers”. In: ACM SIGCSE Bulletin. Vol. 36. 4. ACM. 2004, pp. 119–

150.

[20] John H Maloney et al. Programming by choice: urban youth learning program-
ming with scratch. Vol. 40. 1. ACM, 2008.

[21] Suzanne Liff Manz. “A strategy for previewing textbooks: teaching readers

to become THIEVES.(Teaching Ideas)”. In: The Reading Teacher 55.5 (2002),

pp. 434–436.

[22] Robert J Mislevy and Geneva D Haertel. “Implications of evidence-centered

design for educational testing”. In: Educational Measurement: Issues and Practice
25.4 (2006), pp. 6–20.

[23] Lijun Ni et al. “Computing with a community focus: outcomes from an app

inventor summer camp for middle school students”. In: Journal of Computing
Sciences in Colleges 31.6 (2016), pp. 82–89.

[24] Lori Pollock et al. “Increasing high school girls’ self confidence and awareness

of CS through a positive summer experience”. In: ACM SIGCSE Bulletin. Vol. 36.
1. ACM. 2004, pp. 185–189.

[25] KathrynM Rich et al. “K-8 learning trajectories derived from research literature:

Sequence, repetition, conditionals”. In: Proceedings of the 2017 ACM Conference
on International Computing Education Research. ACM. 2017, pp. 182–190.

[26] Jean Salac et al. “An Analysis through an Equity Lens of the Implementation

of Computer Science in K-8 Classrooms in a Large, Urban School District”.

In: Proceedings of the 50th ACM Technical Symposium on Computer Science
Education. ACM. 2019, pp. 1150–1156.

[27] Scratch Act 1. url: https://www.canonlab.org/scratchact1modules.

[28] Sue Sentance, Jane Waite, and Maria Kallia. “Teachers’ Experiences of using

PRIMM to Teach Programming in School”. In: Proceedings of the 50th ACM
Technical Symposium on Computer Science Education. ACM. 2019, pp. 476–482.

[29] Keith Topping and Nancy Ferguson. “Effective literacy teaching behaviours”.

In: Journal of Research in Reading 28.2 (2005), pp. 125–143.

[30] Timothy Urness and Eric D Manley. “Generating interest in computer science

through middle-school Android summer camps”. In: Journal of Computing
Sciences in Colleges 28.5 (2013), pp. 211–217.

[31] Lev Vygotsky. “Interaction between learning and development”. In: Readings
on the development of children 23.3 (1978), pp. 34–41.

[32] David C Webb, Alexander Repenning, and Kyu Han Koh. “Toward an emergent

theory of broadening participation in computer science education”. In: Pro-
ceedings of the 43rd ACM technical symposium on Computer Science Education.
ACM. 2012, pp. 173–178.

[33] Joanna P Williams. “Instruction in reading comprehension for primary-grade

students: A focus on text structure”. In: The Journal of Special Education 39.1

(2005), pp. 6–18.

Paper Session: Learning A SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

85

https://www.canonlab.org/scratchact1modules

	Abstract
	1 Introduction
	2 Related Work
	3 Theoretical Framework
	3.1 CS Education Pedagogy
	3.2 Reading Comprehension Strategies

	4 TIPP&SEE Learning Strategy
	5 Methods
	5.1 Experimental Design
	5.2 Scratch Act 1
	5.3 Assessments
	5.4 Data Analysis

	6 Results
	6.1 Events & Sequence
	6.2 Loops

	7 Discussion
	8 Limitations & Future Work
	9 Acknowledgements

