What is the Relationship between Computer Science Instruction and Reading & Math Performance?

Jean Salac, Cathy Thomas, Chloe Butler, & Diana Franklin

University of Chicago & Texas State University

@SaladwithaC
Is there Computer Science instruction in your local primary/elementary schools?

• If yes, why do you think your local school started teaching CS?
• If no, what do you think are the barriers to including CS?
Worldwide expansion of CS instruction is not reaching all schools.
Goal: Explore how CS relates to Reading & Math outcomes

• One way to motivate the inclusion of CS: Demonstrate its impact on important academic outcomes, like reading & math

• Research Questions:
 • How is CS instruction associated with reading and math scores?
 • How do any associations apply to learners with academic challenges?
Two forms of CS: Use → Modify → Create & TIPP&SEE

Learning Outcome
Example Use → Modify

Now implement these changes:

Make the Marchers move right across the road to the Speaker.

Make the Marchers stop when they touch the Speaker.

Make the Speaker stay still until the Marchers touch her.

Make the Speaker move right until she touches the Poster Holder.

Change the Speaker’s costume to “Speaking” so she is facing podium.
Title
Instructions
Purpose
Play

Sprites
Events
Explore
“TIPP” was inspired by previewing strategies.

Get a TIPP from the Project Page:

- **Title:** What is the title of the project? Does it tell you something about the project?

- **Instructions:** What do the instructions tell you to do?

- **Purpose:** What is the purpose of this activity? What will this code teach you?

- **Play:** Run the project and see what it does! Which sprites are doing the actions?

1. Who talks when I click 🟢?
 - Catrina
 - Left
 - Middle
 - Right

2. Who talks when I press spacebar?
 - Catrina
 - Left
 - Middle
 - Right
“SEE” was inspired by text structure strategies.

SEE Inside:

Sprites: Click on the sprite that you want to learn from or change.

Events: Look at the event blocks starting the scripts. Which scripts are most useful?

Explore: Try different changes to the scripts and observe what happens!

4. Which block makes the sprite bigger?

change size by 100 | say I am Grandpa John. for 2 seconds | change size by -100

5. Which block makes the sprite smaller?

change size by 100 | say I am Grandpa John. for 2 seconds | change size by -100
We compared reading & math test scores across conditions

- 3 conditions of students (age 9-10):
 - Use → Modify → Create only
 - TIPP&SEE
 - No CS

- All students: ANCOVA on reading & math standardized test scores

- Students with academic challenges:
 - Economic challenges
 - Multilingual (limited English proficiency)
 - Disabilities

- Students with economic challenges: parametric ANCOVA

- Multilingual students & students with disabilities: non-parametric ANCOVA
CS not associated with reading across conditions
CS not associated with reading with presence/absence of instruction
CS associated with math gains for students with less scaffolded Use → Modify → Create instruction

![Box plot diagram showing math score improvements over years for different groups.](image)
Math gains applied to students with economic challenges
Math gains applied to multilingual students

- UMC only
- TIPP&SEE
- No CS
For students with disabilities, CS was not associated with math across conditions.
For students with disabilities, CS was not associated with math across presence/absence of instruction
Why math gains in UMC only condition, not TIPP&SEE?

Possible explanations:

• More scaffolded instruction → Less exposure to skills generalizable to math

• Some blocks in Scratch may expose students to new math concepts, e.g. angles

• More structured curriculum → Teachers less likely to add new math concepts
What is the Relationship between CS Instruction and Reading & Math Performance?

Jean Salac, Cathy Thomas, Chloe Butler, & Diana Franklin
{salac, dmfranklin}@uchicago.edu, {thomascat, cbb64}@txstate.edu
Twitter: @SaladwithaC

Key Contributions

• Performance gains in reading were not associated with CS instruction.

• Performance gains in math were associated with moderately scaffolded computing instruction.

• Overall trends applied to students with economic challenges & multilingual students, but not students with disabilities.