
If They Build It, Will They Understand It?
Exploring the Relationship between Student Code and Performance

Jean Salac & Diana Franklin

University of Chicago, Chicago, IL, USA

{salac,dmfranklin}@uchicago.edu

ABSTRACT
The computer science community has struggled to assess student

learning via Scratch programming at the primary school level

(ages 7-12). Prior work has relied most heavily on artifact (stu-

dent code/projects) analysis, with some attempts at one-on-one

interviews and written assessments. In this paper, we explore the

relationship between artifact analysis and written assessments.

Through this study of a large-scale introductory computing im-

plementation, we found that for students who had code in their

projects, student performance on specific questions on the written

assessments is only very weakly correlated to specific attributes of

final projects typically used in artifact analysis as well as attributes

we use to define candidate code (r < 0.2, p < 0.05). In particular,

the correlation is not nearly strong enough to serve as a proxy for

understanding.

KEYWORDS
primary education, assessment, artifact analysis, Scratch

ACM Reference Format:
Jean Salac & Diana Franklin. . If They Build It, Will They Understand It?:

Exploring the Relationship between Student Code and Performance. In Pro-
ceedings of the 2020 ACM Conference on Innovation and Technology in Com-
puter Science Education (ITiCSE ’20), June 15–19, 2020, Trondheim, Norway.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3341525.3387379

1 INTRODUCTION
Many countries worldwide are implementing initiatives to integrate

Computer Science (CS) and Computational Thinking (CT) instruc-

tion at the primary and secondary level, such as Israel, India, New

Zealand, the United Kingdom, and the United States [7, 13]. Mov-

ing from the after-school, optional domain into the formal school

classroom increases the pressure to develop accurate assessment

techniques that match the pedagogical approaches and tools used

for this age group.

A popular programming language and development environ-

ment used in primary schools is Scratch [8]. Three assessment

techniques are common in this realm: analyzing programs students

create (artifact analysis), giving written assessments, and interview-

ing students. Interviews are the most accurate measure because of

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ITiCSE ’20, June 15–19, 2020, Trondheim, Norway
© Association for Computing Machinery.

ACM ISBN 978-1-4503-6874-2/20/06. . . $15.00

https://doi.org/10.1145/3341525.3387379

the ability to ask follow-up questions, but they are prohibitively

time-consuming. Analyzing programs is the fastest but may not

be accurate, and there is a lack of validated written assessments

tailored to the learning goals of specific curricula.

Many research studies have used artifact analysis to draw con-

clusions about student learning [4, 9, 10, 20, 27]. However, artifact

analysis can be misleading, stemming from both false negatives

and false positives. Students can include code in their programs

that they do not understand, leading to false positives [5]. Con-

versely, students may understand concepts that they do not choose

to include in their code, leading to false negatives.

Our research seeks to better understand the relationship between

student artifacts and student understanding. In particular, it answers

the following research question:What is the relationship between
the presence of specific code constructs in a student’s computational
artifact and that student’s performance on a question asking about
those code constructs?

This paper presents key findings from summative assessments

given at the conclusion of two modules in a curriculum taught in

a large urban school district in the United States (US). In the next

section, we present relevant literature on assessment of student

learning in primary school and in §3, we present the theoretical

frameworks grounding our study. In §4, we describe our methods

and experimental design. We present our results in §5. We then

provide a discussion and conclusions in §6. Finally, §7 describes

limitations of this study.

2 RELATEDWORK
There is a wealth of literature on automated assessment, including

Scrape [27], Hairball [4], and Dr. Scratch [20]. Automated assess-

ments have gotten more sophisticated over time, moving from

counting instances of particular blocks [1, 27], to identifying cor-

rect and incorrect uses of code constructs [4], to analyzing higher

order understanding [20, 22].

However, any technique focused on artifact analysis assumes

that students understand the code they use in their projects. This

is not necessarily true, as identified by Brennan [5]. Students can

use code in their projects that they don’t truly understand, by

copying exact code they were taught, remixing from the Scratch

community, or receiving help from peers or instructors. Scratch

project development is rarely performed in a strict exam-like setting,

where young students are prohibited from speaking to peers or

receiving help from the instructor. One study went so far as to

record the level of help given by instructors in order to "subtract" it

from understanding demonstrated by the artifact [4]. In addition, a

student may understand a concept even if they did not choose to use

it in their open-ended artifact. Written assessments or interviews

Session: Code Quality and Code Understanding ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

473

https://doi.org/10.1145/3341525.3387379
https://doi.org/10.1145/3341525.3387379

are necessary to find out whether students understand the concepts

both included and not included in their code.

Traditional written assessments are frequently used to assess

student learning in Scratch, both in the school [18] and the extracur-

ricular setting [16]. Researchers are also innovating on the form of

written assessments, going beyond the pen-and-paper format. For

example, Marinus et al. developed an assessment around Cubetto, a

simplified version of the turtle LOGO programming task developed

by Seymour Papert [17, 21]. However, very few validated assess-

ments exist at the K-12 level. The validated assessments that do

exist are designed for older audiences, such as college-level CS1

students [26], and middle school students students [2].

Interviews provide a more nuanced and personalized way of

assessing student learning. Brennan and Resnick found that through

artifact-based interviews, they were able to identify the depth of

a student’s understanding of a particular concept, as opposed to

only identifying whether they understood a concept [5]. While

interviews can provide a more complete picture of student learning,

they are limited bywhat students can remember about their projects

and the project(s) selected for discussion [5]. Interviews are also

very time-consuming, making them unrealistic for teachers who

are already very time-constrained.

This work builds upon previous research in assessing student

learning by exploring the relationship between attributes in student

artifacts and their performance on written assessment questions on

events, sequences, and loops. Written assessments were selected

over interviews because we were designing for the formal school

setting, where interviews would be impractical for school teachers

with limited time and resources.

3 THEORETICAL FRAMEWORK
To contextualize our exploration of the relationship between demon-

strated coding ability and understanding, we present the Block

model of program comprehension [24]. The Block model intro-

duces a duality between a structural and functional understanding.

A structural understanding is understanding how the code works,
which encompasses the syntax and semantics of a programming

language (text surface), and the data and control flow in a program

(program execution). In contrast, a functional understanding is un-

derstanding what the code does, i.e. the more abstract purpose of

the code.

When applied to Scratch programming pedagogical approaches,

functional understanding might be expected out of students who

remixed projects (because they know what the code does but not

necessarily how or why it works that way), whereas structural

understanding is often the goal for students building their own

projects. In this study, we focus on structural understanding. More

specifically, we define understanding as being able to predict the

outcome of a certain script run by the computer or if students could

postulate which script produced a certain outcome, similar to Sorva

et al [25].

4 METHODS
4.1 Study Design
The study consisted of 296 students aged 9-10 from a large urban

school district in the US. Student gender was split almost evenly.

The self-identified participant ethnic breakdown was 32.91% Asian,

28.79% Hispanic/Latino, 9.49 % White, 8.29% Pacific Islander, and

6.33% Black. Over the course of approximately eight months, they

were taught three units in a Constructionist-inspired introductory

CT curriculum in Scratch, which was a modification of the Creative

Computing Curriculum [6]. Unit 1 was an introduction to Scratch,

Unit 2 covered events & sequence, and Unit 3 covered loops. Units

2 and 3 aimed to teach the beginner learning goals of sequence

and repetition, respectively, from [23]. Upon completion of Units

2 and 3, students took a 20-30 minute pen-and-paper assessment,

consisting of multiple-choice, fill-in-the-blank, and open-ended

questions.

All four teachers in the study underwent the same professional

development to teach this curriculum. Three teachers taught three

classrooms, and one teacher taught five classrooms. Classroom size

ranged from 13 to 31 students. Each lesson took 60-90 minutes and

took place once every 1-2 weeks, depending on the classroom. The

primary language of instruction was English.

In addition to their assessments, we also collected students’ cul-

minating projects for each unit. Students created a project over 1-3

class periods (approximately 1 hour each) based on an open-ended

prompt meant to encourage the use of code constructs related to

the CT concept covered in the module. For example, to motivate stu-

dents to use loops, they were prompted to build a band in Scratch,

where sound clips would need to repeat in order to continuously

play. 287 students submitted projects for Unit 2, and 275 students

submitted projects for Unit 3.

4.2 Assessment Design
Our assessment design was guided by the Evidence-Centered De-

sign Framework [19]. Domain analysis was informed by the CS

K-12 Framework and the K-8 learning trajectories for elementary

computing [23]. These overarching goals were narrowed in domain

modeling to identify specific knowledge and skills desired. In this

study, the artifacts students created are projects that students create

on their own, not remixed from the Scratch community. The knowl-

edge they should possess is structural content related to control

flow and individual block actions. More specifically, they should

know what event causes a script to run, the order in which blocks

run, and the result of those actions on the stage.

The assessment questions were designed by a team of CS and

education researchers and practitioners. For face validity, questions

were then reviewed by a group of four practitioners. Cronbach’s al-

pha (α) was also calculated for internal reliability between questions
on the same concept to ensure that they produce similar scores.

Written results were analyzed to remove questions for which for-

matting led to spurious markings or open-ended question wording

led to answers that did not provide insight into understanding. In

this paper, we present a question each on sequence, events, and par-

allelism, as well as 4 questions on loops. One of the loops questions

has 3 sub-questions for a total of 6 items (α=.8)

4.3 Artifact Analysis
Student projects were analyzed for attributes that were either in-

dicative of overall complexity or were related to the concept tested

in a question (Table 1). Overall complexity can be gleaned from

Session: Code Quality and Code Understanding ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

474

total number of blocks, scripts, sprites, unique blocks, unique cate-

gories, and average script length (Scratch analog for lines of code

in text-based programming). These attributes were analyzed for

correlations with any of the assessment questions. Additionally,

Unit 2 taught sequence and events and Unit 3 taught loops, so our

analysis looked for both the total and the unique count of event

and loop blocks. These attributes were analyzed for correlations

only with their respective assessment questions.

Depending on whether the variables in question were dichoto-

mous or continuous, either the point-biserial or the Pearson cor-

relation coefficient was calculated. If either the attribute or the

question score was dichotomous, the point-biserial correlation co-

efficient was used (shown in Q1, Q3-5, Q7). Otherwise, if both were

continuous, the Pearson correlation coefficient was used.

Both methods result in a correlation coefficient r and a p-value.

Absolute values of r between .9 and 1 , between .7 and .9, between

.5 and .7, between .3 and .5, and between 0 and .3 are considered

very strong, strong, medium, weak, and very weak correlations,

respectively [12]. A p-value less than .05 is statistically significant,

meaning that we can reject the null hypothesis that the correlation

is equal to 0.

Construct Measures

Block total count unique count categories

Scripts total count avg length

Sprites total count

Loops/Events total count unique count

Table 1: Attributes from Artifact Analysis
5 RESULTS
Our results aim to answer the core question — does a student’s use
of certain code constructs mean that they understand the concepts
associated with those code constructs? For each question, we identify

a specific code construct that would make sense as a proxy. We

then present the data to give two sets of intuition. First, we present

the statistical correlation between code attributes and assessment

question results. Second, we present data to give a sense of the

rates of the two circumstances we want to avoid - false positives

(students with relevant code in their artifacts but do not understand

the concept) and false negatives (students without relevant code in

their artifacts but who do understand the concept).

5.1 Q1: Sequence
Q1 asked students to circle the say block that ran last in a script

with alternating say and wait blocks .

A reasonable code construct would be script length, assuming

that students who implement scripts of sufficient length are more

likely to understand sequence. The distribution of the average script

length across student projects is shown in Figure 1. This shows that

about 80% of students have a script length of less than 2, which

means students predominantly have scripts without sequence—

consisting of only an event block and a single action block.

Looking at Figure 1, we see that students with script length 1-2

perform similarly to students with greater script length. In addition,

there is no script length that can serve as a cut off – that prior to

that length, students are incredibly unlikely to correctly identify

the last instruction (leading to few false negatives) and afterwards

Figure 1: Q1 Student Count (left) & Correct Responses (right) for
Average Script Length

are incredibly unlikely to incorrectly identify the last instruction

(leading to few false positives). Not surprisingly, there was only

a very weak correlation between question response and average

script length (r=.15, p<.01).

In addition to the very weak correlation found with the average

script length, there were also very weak correlations found with

the number of categories from which blocks were used and the

number of unique events. The rest of the attributes were found to

have no correlation with performance on this question.

5.2 Q2: Events Starting 1 Script
Q2 showed four scripts and asked students to circle which script(s)

would run if they click on the sprite. Two scripts started with when
sprite clicked, one with when green flag clicked,
and one with when space key pressed. Students received
two points for every correct script circled and lost one for any

incorrect script circled, for 0-4 points. Circling no or all four scripts

earned 0 points, as neither gives any insight into understanding.

We explored two code constructs — the total number of events

and the number of unique events a student used in their project. For

the total number of events, it would be a sensible expectation that

the more students implement and practice events, the better they

understand their functionality. As for the number of unique events,

it would be reasonable to expect that students who implement

scripts with multiple events understand the relationship between

the event the user performs and the resulting script that gets run.

There were very weak correlations between student performance

on this question and the rest of the attributes of their projects,

except for number of sprites, which had no correlation. Similarly,

there were only very weak correlations between question score

and (1) the number of events in code (r=.21, p <.01) and (2) the

number of unique events in code (r=.26, p<.01). While there was

a slight increasing trend in the average score depending on the

number of unique events, there was a vast difference in individual

performance on the assessment question for each number of unique

events (Figure 2).

5.3 Q3: Events Starting Parallel Scripts
Question 3 consists of two actions (playing drum and changing

costume) in three scripts across two sprites (Pico & Giga), all started

by when green flag clicked. Pico’s single script performs

Session: Code Quality and Code Understanding ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

475

Figure 2: Q2 Events for 1 Script vs No. of Unique Events

the actions sequentially, whereas Giga’s two scripts run in parallel

(Figure 3). To assess students’ understanding of multiple events

in multiple scripts versus sequential events in one script, students

were asked to identify the true statements from the following:

a) Pico plays the drum 7 times THEN changes costumes 4 times.

b) Giga plays the drum 7 times THEN changes costumes 4

times.

c) Pico plays the drum AND changes costumes at the same

time.

d) Giga plays the drum AND changes costumes at the same

time.

e) Pico and Giga both play the drum 7 times THEN change

costumes 4 times.

The correct answers were (a) and (d). Students earned 2 points

for each correct answer circled and lost 1 point for each incorrect

answer circled, for 0-4 points. Circling no or all four scripts earned

0 points.

For this question, the artifact attribute used was using the same

event for multiple scripts. There was no correlation between using

the same event for multiple scripts and scores on this question

(p=.076) (Figure 4). In fact, students across the board struggled

with this question, with an average score of 1.11. Performance on

this question suggests a very high frequency of false positives for

parallelism. Although students may use the same event for different

sprites, they do not truly understand the resulting parallel execution.

This result is not surprising, however, as even high school and

university students struggle with parallelism [14, 15].

5.4 Q4: Repeat Iteration Count
Students were shown a repeat block and asked how many times the

loop would repeat. For this question, the code attribute we focused

on was the number of loops, assuming that students who have

implemented and practiced more with loops were more likely to

have a better understanding of repetition. The distribution of the

number of students who used specific numbers of loops is shown

in Figure 6.

Overall, students did very well on this problem, with 90.1% of

students answering correctly. There was only a very weak corre-

lation between answering this question correctly and the number

of loops in their projects (r=.12, p<.05). There was no clear cut-off

number of loops at which students who meet or exceed the cut-off

are more likely to understand loops better compared with students

Figure 3: Q3 Sequential (left) and Parallel (right) Scripts

Figure 4: Q3 Events for Multiple Scripts

Figure 5: Q4 Correct Responses vs No. of Loops

below the cut-off (Figure 5). Even students who did not use a single

loop in their projects performed well on this problem, with 85%

of them answering correctly. The other attributes were similarly

very weakly correlated to performance on this question, except

for the average script length and number of sprites, which had no

correlation.

5.5 Q5: Unrolling a Loop
Students were shown a repeat 4 loop consisting of two blocks.

They were given choices of those two blocks repeated 1, 2, 3, and 4

Session: Code Quality and Code Understanding ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

476

Figure 6: Student Count for No. of Loops

Figure 7: Q5 Correct Responses vs No. of Loops

times. Students were then asked to choose the unrolled code that

had the same functionality as the loop. Similar to Q4, the code

attribute chosen for this question was also the number of loops.

Compared with Q4, students struggled with this question, with

only 57.3% answering correctly. Performance on this question was

very weakly correlated with the number of loops used (r=.17, p<.01).

The percentage of students who answer correctly fluctuates as the

number of loops increases (Figure 7). This suggests that there is no

clear threshold number of loops above which students are more

likely to understand loop functionality, compared with students

who are under that threshold.

As for the other attributes, performance on this question was

also very weakly correlated with the number of categories and

scripts. There was no correlation with any of the other attributes.

5.6 Q6: Repeated Blocks vs Repeat Loops
Students were asked to circle the scripts that would make a sprite

perform some actions exactly three times. Students were provided

one set of blocks (a) alone and (b) inside a repeat 3 loop, and

three sets of sequential blocks (c) alone and (d) within a repeat block

(Figure 8). Q6 was designed based on a common misconception

observed by teachers—not understanding the relationship between

repeated code within a loop and repeated loop iterations. Choices

were provided in random order on different assessments. Q6 had

two correct answers (b and c described above); students received

two points for each correct answer circled and lost one point for

each incorrect answer circled, for 0-4 points.

Figure 8: Q5 Answer Option (d) and inspiration for question.

Figure 9: Q6 Repeat Blocks & Loops vs No. of Loops

As this question also asked about loop functionality like the

previous two questions, the number of loops in their project was

the code attribute of focus. There was a very weak correlation

between scores on this question and number of loops used (r=.17,

p<.01). Student scores on this question varied regardless of the

number of loops they used in their projects (Figure 9).

As for the rest of the attributes, the total number of blocks,

scripts, and unique loops were also very weakly correlated with

scores on Q6. The others were not correlated with performance on

this question.

5.7 Q7: Loops Within Sequence
Question 7 consisted of a repeat loop sandwiched between two

blocks and asked them three sub-questions: which blocks run (a)

in, (b) before, and (c) after the loop. On each sub-question, students

earned 2 points for each correct answer circled and lost 1 point for

each incorrect answer circle, for 0-4 points (a) or 0-2 points (b, c).

For this question, the code construct of focus was whether or

not they had a script that had at least one loop and one other action

block. It would be reasonable to expect that students who used a

loop within a sequence, whether the other block was before or after

the loop, would be more likely to perform well on this question.

There were only 25 students who met this criteria.

There was only a very weak correlation between scores on this

attribute and part (a) (r=.12,p<.05), no correlation with part (b)

(p=.1), and a very weak correlation with part (c) (r=.15, p <.05).

Students with the attribute code did well enough (Figure 10) that

this code attribute could be considered a proxy for understanding.

However, it is also clear from the figures that a majority of students

lacking that particular code snippet also largely understand this

concept.

Session: Code Quality and Code Understanding ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

477

Figure 10: Q7a-c (left to right) vs Presence of Loop in Sequence
(Loop/No Loop)

Scores on part (a) were very weakly correlated with the number

of categories, total number of scripts, total number of loops, and

the number of unique loops. Scores on part (b) were very weakly

correlated with the total number of blocks, categories, scripts, and

the number of unique loops. Scores on part (c) were very weakly

correlated to the rest of attributes, except for the average script

length and the total number of sprites. There were no correlations

between the other attributes and any of the question parts.

6 DISCUSSION AND IMPLICATIONS
We now revisit our original research question to see what this

question-by-question analysis reveals. What is the relationship be-
tween the presence of specific code constructs in a student’s artifact
and that student’s performance on a question asking about those code
constructs?

Blocks Scripts Sprites Loops/Events

Q Tot Uni Cat Tot Len Tot Tot Uni

Q1 - - VW - VW - - VW

Q2 VW VW VW VW VW - VW VW

Q3 W VW VW VW - - VW VW

Q4 VW VW VW VW - - VW VW

Q5 - - VW VW - - VW -

Q6 VW - - VW - - VW VW

Q7a - - VW VW - - VW VW

Q7b VW - VW VW - - - VW

Q7c VW VW VW VW - - VW VW

Table 2: Correlations betweenQuestion Score andProjectAttributes.
‘Tot’, ‘Uni’, ‘Cat’, & ‘Len’ are short for ‘Total’, ‘Unique’, ‘Categories’, &
‘Length’, respectively. Dash (‘-’), ‘VW’, & ‘W’ indicate no, very weak,
andweak correlations, respectively. Correlation intervals are in Sec-
tion 4.3

Concept-related code constructs had either very weak or no

correlations with performance on the written assessments for every

question (shown in blue on Table 2, except for Q3 which covered

parallelism and had a more specific attribute of focus). In addition,

there was only a single instance of an attribute having more than

a very weak correlation – a weak correlation between the total

number of blocks with identifying parallel vs serial code (shown

in yellow on Table 2). The presence of these correlations indicate

that using the constructs meant that students were more likely to

understand a concept – at the very minimum, a correlation would

ideally indicate a structural understanding of the code constructs

they used. However, the magnitude of these correlations fall far
short of demonstrating a proxy for understanding. This supports

Brennan et. al.’s finding that students can use code in their projects

that they do not truly understand [5].

This has important implications for computer science education

research. As researchers, we need to be careful about the claims we

make based solely on artifact analysis. Artifact analysis shows that

a student built something - not that they understood something.

A student does not use a loop in their code and immediately

"understands loops" all at once. An understanding of loops is made

up of individual learning goals, some dependent on each other (like

a learning progression [3]) and some not (like a piece of knowledge

approach [11]). We presented three assessment questions related

to loops, all with very different performance by students. While

a vast majority of students were able to tell how many times the

loop would iterate, many fewer were able to identify equivalent

sequential code or reason about the number of times something

occurred within a loop and the number of times the loop iterated.

Rich et al. presented a plethora of learning goals for this age group

related to loops [23], some of which were tested in our assessment.

This study highlights the drawbacks of artifact analysis – an

expedient but inaccurate choice – in order to spur work that will

bridge this gap between written assessments, artifact analysis, and

interviews. Avenues for future work include: (1) assessment tech-

niques that balance the nuance and accuracy of interviews, the

ease of written assessments, and the incorporation of student work

fundamental to artifact analysis, (2) more careful applications of

artifact analysis, and (3) support for teachers in designing projects

that enable students to better demonstrate understanding.

As more primary schools integrate computing into their curric-

ula, with the equity goal contained in CS for All movements, they

need tools that accurately assess the success of their curricula and

teaching techniques. Such tools would enable schools to identify

gaps and fill them with better curricula, refined software tools,

teaching strategies, and learning strategies.

7 LIMITATIONS
Students were drawn from 14 classrooms at 4 schools taught by

4 different teachers. While teachers all used the same curriculum

and received the same training, instructional time varied by class-

room, which could have implications for correlations with student

artifact attributes. We note that in prior studies, even when artifact

analysis has been used to study understanding, there is no estab-

lished or validated knowledge on how much time students should

be given to create artifacts such that their work can demonstrate

understanding.

8 ACKNOWLEDGEMENTS
This project was funded by the US National Science Foundation

(NSF) Grant No. 1660871 and DGE-1746045.

REFERENCES
[1] Joel C Adams and Andrew R Webster. “What do students learn about program-

ming from game, music video, and storytelling projects?” In: Proceedings of

Session: Code Quality and Code Understanding ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

478

the 43rd ACM technical symposium on Computer Science Education. ACM. 2012,

pp. 643–648.

[2] Min-W. Wiebe E. Mott B. Boyer K. E. Lester J. Akram B. “Assessing Middle

School Students’ Computational Thinking Through Programming Trajectory

Analysis”. In: Proceedings of the 50th ACM technical symposium on Computer
science education. ACM. 2019, p. 1269.

[3] Michael T Battista. “Conceptualizations and issues related to learning progres-

sions, learning trajectories, and levels of sophistication”. In: The Mathematics
Enthusiast 8.3 (2011), pp. 507–570.

[4] Bryce Boe et al. “Hairball: Lint-inspired Static Analysis of Scratch Projects”. In:

Proceeding of the 44th ACM Technical Symposium on Computer Science Education.
SIGCSE ’13. Denver, Colorado, USA: ACM, 2013, pp. 215–220. isbn: 978-1-4503-

1868-6. doi: 10.1145/2445196.2445265. url: http://doi.acm.org/10.1145/2445196.

2445265.

[5] Karen Brennan and Mitchel Resnick. “New frameworks for studying and as-

sessing the development of computational thinking”. In: Proceedings of the 2012
annual meeting of the American Educational Research Association, Vancouver,
Canada. Vol. 1. 2012, p. 25.

[6] Creative Computing. An introductory computing curriculum using Scratch.
[7] CS for ALL. url: https://www.csforall.org/.

[8] Louise P Flannery et al. “Designing ScratchJr: support for early childhood learn-

ing through computer programming”. In: Proceedings of the 12th International
Conference on Interaction Design and Children. ACM. 2013, pp. 1–10.

[9] Diana Franklin et al. “Assessment of computer science learning in a scratch-

based outreach program”. In: Proceeding of the 44th ACM technical symposium
on Computer science education. ACM. 2013, pp. 371–376.

[10] Diana Franklin et al. “Using upper-elementary student performance to under-

stand conceptual sequencing in a blocks-based curriculum”. In: Proceedings
of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education.
ACM. 2017, pp. 231–236.

[11] David Hammer and TIFFANY-ROSE SIKORSKI. “Implications of complexity for

research on learning progressions”. In: Science Education 99.3 (2015), pp. 424–

431.

[12] Dennis E Hinkle, William Wiersma, Stephen G Jurs, et al. “Applied statistics

for the behavioral sciences”. In: (1988).

[13] Peter Hubwieser et al. “A global snapshot of computer science education in

K-12 schools”. In: Proceedings of the 2015 ITiCSE on working group reports. ACM.

2015, pp. 65–83.

[14] Yifat Ben-David Kolikant. “Gardeners and cinema tickets: High school students’

preconceptions of concurrency”. In: Computer Science Education 11.3 (2001),

pp. 221–245.

[15] Gary Lewandowski et al. “Commonsense computing (episode 3): concurrency

and concert tickets”. In: Proceedings of the third international workshop on
Computing education research. ACM. 2007, pp. 133–144.

[16] Colleen M Lewis and Niral Shah. “Building upon and enriching grade four

mathematics standards with programming curriculum”. In: Proceedings of the
43rd ACM technical symposium on Computer Science Education. ACM. 2012,

pp. 57–62.

[17] Eva Marinus et al. “Unravelling the Cognition of Coding in 3-to-6-year Olds:

The development of an assessment tool and the relation between coding ability

and cognitive compiling of syntax in natural language”. In: Proceedings of the
2018 ACM Conference on International Computing Education Research. ACM.

2018, pp. 133–141.

[18] Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari. “Learning

computer science concepts with scratch”. In: Computer Science Education 23.3

(2013), pp. 239–264.

[19] Robert J Mislevy and Geneva D Haertel. “Implications of evidence-centered

design for educational testing”. In: Educational Measurement: Issues and Practice
25.4 (2006), pp. 6–20.

[20] Jesús Moreno-León et al. “On the Automatic Assessment of Computational

Thinking Skills: A Comparison with Human Experts”. In: Proceedings of the 2017
CHI Conference Extended Abstracts on Human Factors in Computing Systems.
CHI EA ’17. Denver, Colorado, USA: ACM, 2017, pp. 2788–2795. isbn: 978-1-

4503-4656-6. doi: 10.1145/3027063.3053216. url: http://doi.acm.org/10.1145/

3027063.3053216.

[21] Seymour Papert. Mindstorms: Children, computers, and powerful ideas. Basic
Books, Inc., 1980.

[22] Alexander Repenning and Andri Ioannidou. “Broadening participation through

scalable game design”. In: ACM SIGCSE Bulletin. Vol. 40. 1. ACM. 2008, pp. 305–

309.

[23] KathrynM Rich et al. “K-8 learning trajectories derived from research literature:

Sequence, repetition, conditionals”. In: Proceedings of the 2017 ACM Conference
on International Computing Education Research. ACM. 2017, pp. 182–190.

[24] Carsten Schulte. “Block Model: an educational model of program comprehen-

sion as a tool for a scholarly approach to teaching”. In: Proceedings of the Fourth
international Workshop on Computing Education Research. ACM. 2008, pp. 149–

160.

[25] Juha Sorva. “Notional Machines and Introductory Programming Education”.

In: ACM Transactions on Computing Education 13 (June 2013), 8:1–8:31. doi:

10.1145/2483710.2483713.

[26] Allison Elliott Tew and Mark Guzdial. “Developing a validated assessment of

fundamental CS1 concepts”. In: Proceedings of the 41st ACM technical symposium
on Computer science education. ACM. 2010, pp. 97–101.

[27] Ursula Wolz, Christopher Hallberg, and Brett Taylor. “Scrape: A tool for vi-

sualizing the code of Scratch programs”. In: Poster presented at the 42nd ACM
Technical Symposium on Computer Science Education, Dallas, TX. 2011.

Session: Code Quality and Code Understanding ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

479

https://doi.org/10.1145/2445196.2445265
http://doi.acm.org/10.1145/2445196.2445265
http://doi.acm.org/10.1145/2445196.2445265
https://www.csforall.org/
https://doi.org/10.1145/3027063.3053216
http://doi.acm.org/10.1145/3027063.3053216
http://doi.acm.org/10.1145/3027063.3053216
https://doi.org/10.1145/2483710.2483713

	Abstract
	1 Introduction
	2 Related Work
	3 Theoretical Framework
	4 Methods
	4.1 Study Design
	4.2 Assessment Design
	4.3 Artifact Analysis

	5 Results
	5.1 Q1: Sequence
	5.2 Q2: Events Starting 1 Script
	5.3 Q3: Events Starting Parallel Scripts
	5.4 Q4: Repeat Iteration Count
	5.5 Q5: Unrolling a Loop
	5.6 Q6: Repeated Blocks vs Repeat Loops
	5.7 Q7: Loops Within Sequence

	6 Discussion and Implications
	7 Limitations
	8 Acknowledgements

