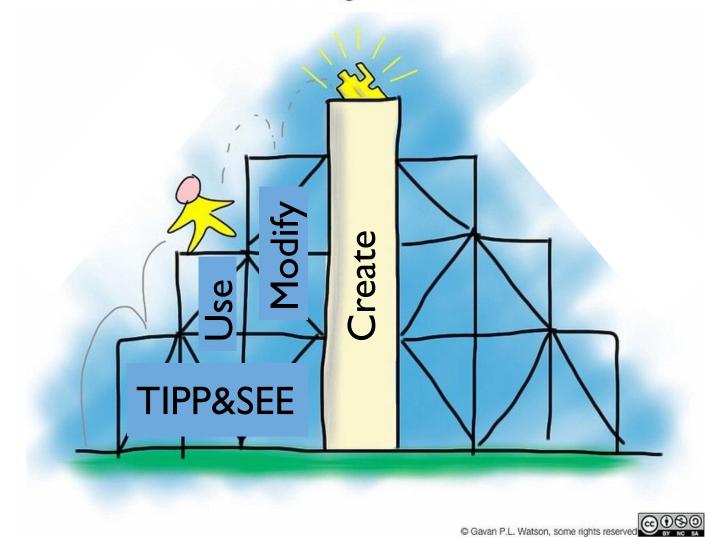
Investigating the Role of Cognitive Abilities in Computational Thinking for Young Learners

Jean Salac, Cathy Thomas, Chloe Butler, & Diana Franklin

University of Chicago & Texas State University

💟@SaladwithaC

Computing for ANyONe: Designing for equity and inclusion

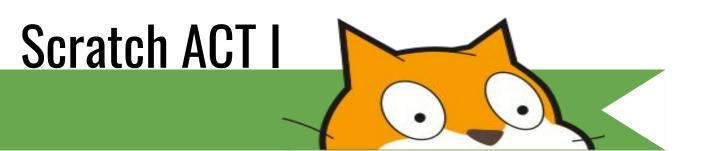


Goal: Explore the Relationship between Cognitive Abilities and CT Performance

- At early ages, learners develop foundational cognitive abilities
- Other fields, like math, science, & reading, have long studied cognitive abilities, but rare in CS
- Research Questions:
 - How are working memory, pattern recognition, & long-term retrieval associated with performance on events, sequence, & loops?
 - How much does TIPP&SEE support students with differing cognitive abilities?
 - For which computational thinking concepts does TIPP&SEE support students with differing cognitive abilities?

Ist type of CS instruction: Use \rightarrow Modify \rightarrow Create

Learning Outcome


3

Title **S**prites **I** nstructions **Events** Purpose Explore Play

Students learned through the Scratch Act 1 curriculum

- Students in our study were 9-10 years old (4th grade).
- Classrooms were randomly assigned to TIPP&SEE or Control (Use \rightarrow Modify \rightarrow Create only) conditions
- Scratch Act I covered events, sequence, & loops.
- Students took an assessment at the end of each module.

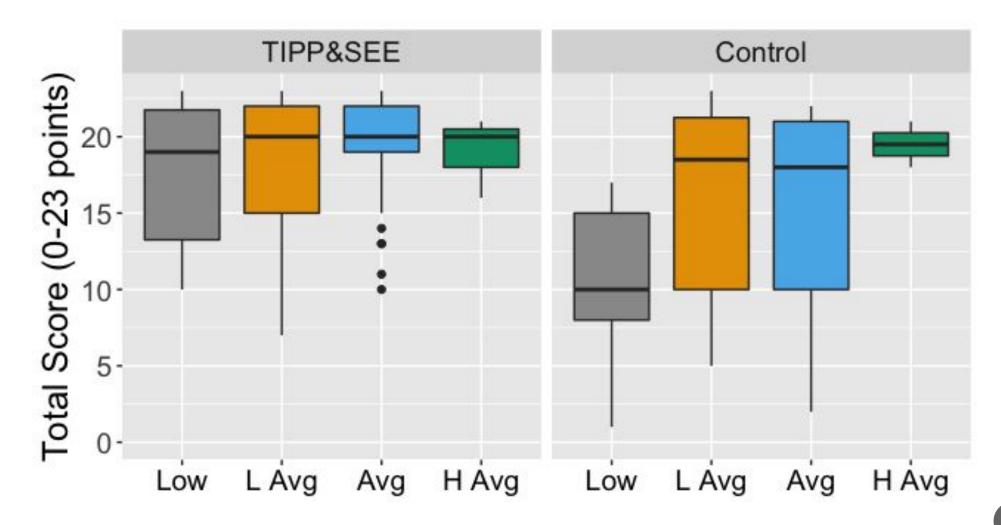
Exploratory Factor Analysis to Match Questions to Concepts

	Remember	Understand
Scratch Basics	Events & Sequence Assessment: Q2 & Q3	
Events		Events & Sequence Assessment: Q4a & Q4b
Sequence		Events & Sequence: Q6 & Q7b Loops: Q5a, b, c
Loops		Loops Assessment: QI, Q2, Q4, Q5a, b, c

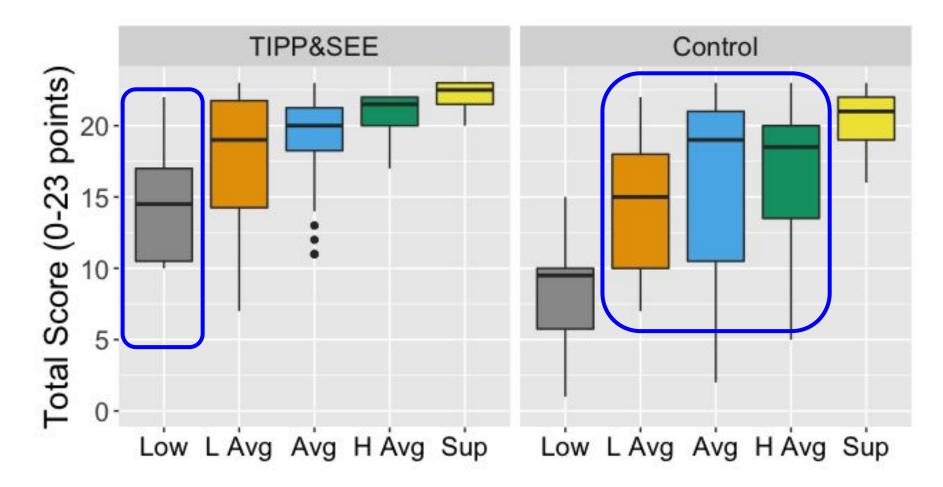
We used the Woodcock-Johnson IV Tests of Cognitive Abilities

- WJ IV tests are **not malleable to instruction**, but to **development**
- Purpose: Allow for comparison of important cognitive abilities
- We conducted 4 tests:
 - Numbers Reversed & Verbal Attention: Short-term working memory
 - Pair Cancellation: Pattern recognition
 - Visual-Auditory Learning: Long-term retrieval

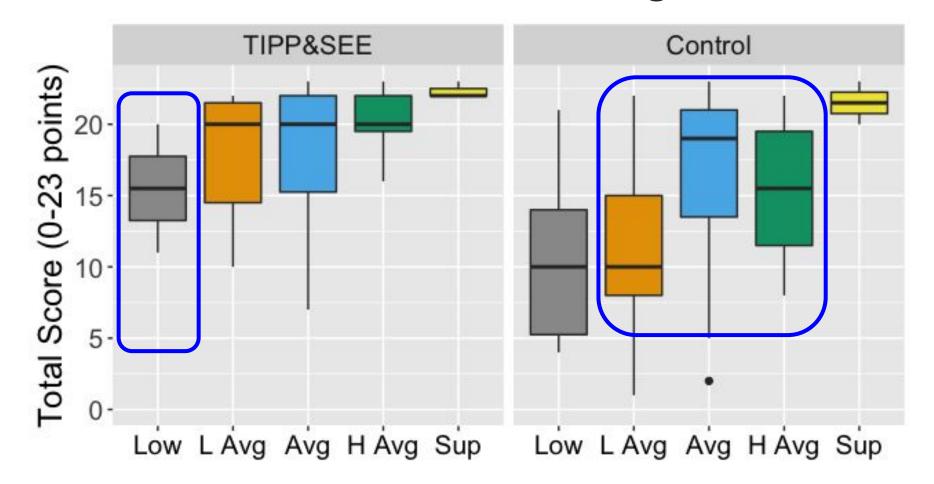
Weak correlations between performance on CT assessments and working memory & long-term retrieval

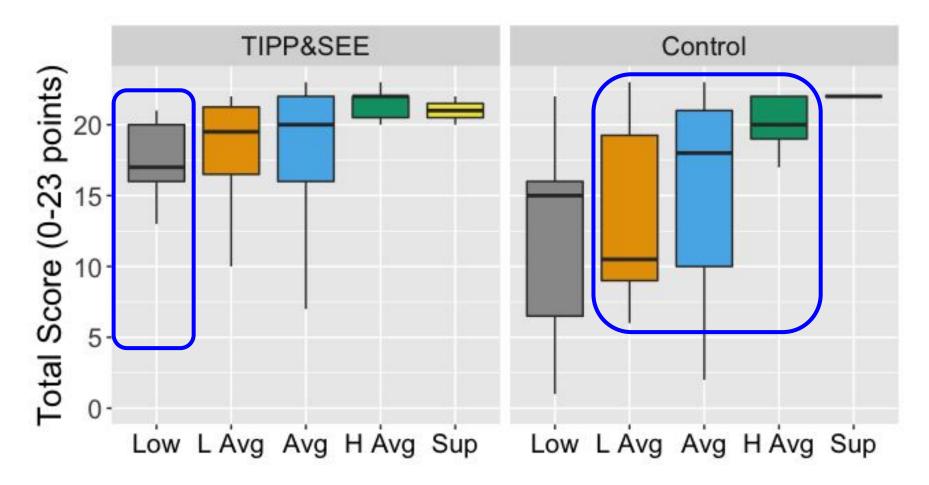

Concept	Q	Numbe	ers Reversed	Verbal	Attention	Visual	-Auditory Learning
		TS	С	TS	С	TS	С
Scratch	E&S Q2	.323**	—	—	—	_	_
Basics	E&S Q3	_	.270**	_	.277**		.431**
Events	E&S Q4a	.218*	—	.335**		.420**	.219*
	E&S Q4b	.237*	—	.391**	—	.416**	.235*
Sequence	E&S Q6	.263*	—	—	—	.222*	.223*
	E&S Q7	_	—	_	.235*	.294**	.361**
	L Q1	_	—	_	_	_	.258*
Loops	L Q2	—	.306**	_	.399**		.372**
	LQ4	_	.238*	$.240^{*}$.317**		.381**
Sequence	L Q5a	.442**	.321**	.410**	.258*	.347**	.358**
& Loops	L Q5b	.432**	.334**	.268*	.340**	.342**	.468**
	L Q5c	.285**	.285**	.276*	.331**	.365**	.360**
							p < .05; p < .01

8


Correlations increased with more complex CT concepts

Concept	Q	Numbe	rs Reversed	Verbal	Attention	Visual-	Auditory Learning
		TS	С	TS	С	TS	С
Scratch	E&S Q2	.323**					—
Basics	E&S Q3	_	.270**		.277**	_	.431**
Events	E&S Q4a	.218*		.335**		.420**	.219*
	E&S Q4b	.237*		.391**		.416**	.235*
Sequence	E&S Q6	.263*			—	.222*	.223*
	E&S Q7	_	_	_	.235*	.294**	.361**
	L Q1	_			_	_	.258*
Loops	LQ2	_	.306**	-	.399**	—	.372**
	LQ4	_	.238*	.240*	.317**	_	.381**
Sequence	L Q5a	.442**	.321**	.410**	.258*	.347**	.358**
& Loops	L Q5b	.432**	.334**	.268*	.340**	.342**	.468**
_	L Q5c	.285**	.285**	.276*	.331**	.365**	.360**
							p < .05; p < .01


Pair cancellation (pattern recognition measure) had no effect on CT performance


TIPP&SEE students with low scores on Numbers Reversed (working memory measure) performed as well as control students with average scores

TIPP&SEE students with low scores on Verbal Attention (working memory measure) performed as well as control students with average scores

TIPP&SEE students with low scores on Visual-Auditory Learning (long-term retrieval measure) performed as well as control students with average scores

Investigating the Role of Cognitive Abilities in Computational Thinking for Young Learners Jean Salac, Cathy Thomas, Chloe Butler,& Diana Franklin {salac, dmfranklin}@uchicago.edu, {thomascat, cbb64}@txstate.edu {Salac, dmfranklin}@uchicago.edu, {thomascat, cbb64}@txstate.edu

Key Contributions

• Weak correlations between performance on CT assessments

and working memory & long-term retrieval

- Correlations increased with more complex concepts \rightarrow More scaffolding beyond TIPP&SEE?
- TIPP&SEE students with below average cognitive test scores

performed as well as control students with average scores

RQI: How do different cognitive abilities relate to CT performance?

- I. Separate our data by TIPP&SEE vs Control
- Ran Spearman correlations between cognitive abilities subtest scores
 & CT assessment scores
- 3. Interpreted ρ correlation values:
 - a. ρ = 0-0.3:Very weak
 - b. ρ = 0.3-0.5:Weak
 - c. ρ = 0.5-0.7: Moderate
 - d. ρ = 0.7-0.9: Strong
 - e. ρ = 0.9-1:Very strong

RQ 2 & 3: How much does TIPP&SEE support students with various levels of cognitive ability? In which concepts?

- I. Classified student scores from the WJ IV test manual
- 2. Combined highest and lowest two classifications for sufficient cell size
- 3. Transformed both aggregate & individual question scores with the Aligned Rank Transform, which enables non-parametric factorial analyses before running an ANOVA F-test
- 4. Used Type III Sum of Squares for unequal cell sizes & estimated marginal means for post-hoc comparisons

16

TIPP&SEE has potential to create more equitable CT instruction, but with some limitations

• Weak correlations between CT & cognitive scores, possibly due

to scaffolding from TIPP&SEE and Use \rightarrow Modify \rightarrow Create

- Correlations increased with concept complexity → Need more scaffolding?
- TIPP&SEE students with low scores in working memory & long-term retrieval performed as well as control students with average scores
- Results on specific concepts are inconclusive