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ABSTRACT
With the global movement to incorporate computer science in-
struction into elementary education, learners are being introduced
to computer science and computational thinking (CS/CT) ideas
at increasingly younger ages. At these early ages, young learners
are developing cognitive abilities foundational to their education.
While other discipline-based education fields, such as math, science,
and reading, have long studied the role of cognitive abilities, such
as short-term working memory and long-term retrieval, in their
respective fields, similar research in computer science education is
relatively sparse.

In this exploratory study, we examined the relationship between
cognitive abilities and CS/CT performance of fourth-grade students
(ages 9-10) who underwent either an introductory CT curriculum
based on Use–>Modify–>Create or the same curriculum with ad-
ditional scaffolding from the TIPP&SEE metacognitive learning
strategy. Our analysis revealed performance on CT assessments
to be weakly correlated with working memory and long-term re-
trieval, with correlations increasing as the CT concepts grew more
complex. This suggests that scaffolding beyond TIPP&SEE may be
needed with more complex CT concepts. We also found that when
using TIPP&SEE, students scoring below average on cognitive abil-
ity tests performed as well as students in the control condition with
average cognitive ability scores. These results indicate TIPP&SEE’s
potential in creating more equitable computing instruction. We
hope that results from this initial exploration can help encourage
further study into the role of cognitive abilities in CS/CT education
for young learners.

CCS CONCEPTS
• Social and professional topics→ K-12 education; Computa-
tional thinking.
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1 INTRODUCTION
All over the world, children are being exposed to the ideas of com-
puter science (CS) and computational thinking (CT) at younger
and younger ages as a result of nationwide movements to promote
CS education [40]. Between the ages of 6 to 12, children develop
the basic cognitive skills needed for learning [28]. Research into
cognitive skills have a long tradition in related discipline-based
education research fields, such as math [33, 55], science [55, 100],
and reading [55, 59]. Few such studies have occurred in computer
science. Further, the cognitive science research that does exist in
computer science education is mostly with university-age or adult
learners [74]. An understanding of the relationship between cogni-
tive abilities and learning outcomes can help a new field such as
elementary computer science create an appropriate developmental
trajectory to guide standards [68–71], inform development of cur-
riculum and assessment, and set the instructional pace for optimal
learning outcomes [43].

To help address this gap, we investigated the cognitive abilities
of fourth-grade students (age 9-10) who were introduced to CT
either through a Use–>Modify–>Create (UMC) curriculum or the
same curriculum with additional scaffolding from the TIPP&SEE
learning strategy in a large urban school district in the United
States. Use –> Modify –> Create is a learn-by-example approach,
where students first observe and make small changes to sample
code that demonstrates a new concept before incorporating the
concept into a program they write from scratch [46]. TIPP&SEE
is a metacognitive strategy that scaffolds the student exploration
process in the Use –> Modify step [77].

In this study, we explore the following research questions:
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(1) How are working memory, pattern recognition, and long-
term retrieval associated with performance on the CS/CT
concepts: events, sequence, and loops?

(2) How much does the TIPP&SEE learning strategy support
students with differing cognitive abilities?

(3) For which computational thinking concepts does TIPP&SEE
support students with differing cognitive abilities?

In the next section, we describe the TIPP&SEE learning strategy.
We follow with a delineation of the theories underpinning our
work in section 3 and an overview of the literature in section 4. We
next describe our methods and results in section 5 and section 6,
respectively. We conclude with a discussion of our results in section
7 and their broader implications in section 8.

2 TIPP&SEE LEARNING STRATEGY
Inspired by learning strategies in reading comprehension, the TIPP&SEE
metacognitive strategy (Figure 1) guides students as they explore
example programs in Scratch, a popular programming language
and environment for elementary classrooms [30]. By providing
extra guidance, TIPP&SEE further scaffolds the Use –> Modify step
in Use –> Modify –> Create lessons.

The first half, TIPP, draws from previewing strategies in reading
comprehension [97]. TIPP stands for Title, Instructions, Purpose,
and Play, cuing students to concentrate on these informative as-
pects of a Scratch project before viewing any code. By focusing on
the Title, Instructions, and Purpose of the project, students get a
preview of the code, enabling them to set goals and recall previous
knowledge. At the final step, Play, students execute the code while
carefully observing its execution.

The second half, SEE, was designed based on text structure strate-
gies [24]. SEE stands for Sprites, Events, and Explore, outlining a
process through which students can explore example code. They
focus on one sprite at a time and pay close attention to the events in
that sprite’s code, forming hypotheses on how each sprite’s scripts
contributed to the code’s execution. Finally, they explore the code
and learn how to effectively modify the code (e.g. adding, removing,
and reordering blocks) to learn how a new code construct works.
Further, drawing from work on problem-solving in broader STEM
research, Purpose, Play, and Explore stages of the strategy provide
prompts, models, and scaffolds for creativity and problem solving
in student projects, helping students to plan and self-regulate [64].

Previous work has shown that students using TIPP&SEE outper-
formed students who used a less scaffolded Use–>Modify–>Create,
both in CT assessments and project complexity [32, 77]. A more
recent study revealed that students with academic challenges per-
formed as well as students without challenges on CT summative
assessments when using TIPP&SEE [76]. This study seeks to delve
deeper by exploring the role of cognitive factors in CS/CT instruc-
tion for elementary age learners to further inform the developmen-
tal continuum of early computer science learning and formation of
equitable curriculum.

3 THEORETICAL FRAMEWORK
This research examined the relationship between specific cognitive
abilities and elementary computer science learning. Previous re-
search has demonstrated that in related fields such as math [33, 55],

Figure 1: TIPP&SEE Learning Strategy

science [55, 100], and reading [55, 59], cognitive abilities, such as
short-term memory and long-term retrieval, influence opportunity
to learn [5, 9]. Therefore, cognitive science and intelligence the-
ories [29, 51] should play a role in elementary computer science
research, as well as in setting grade level standards, instructional
design, and delivery.

3.1 Memory Capacity
Short-term working memory represents the cognitive ability to
hold information and manipulate it for use. For example, working
memory manages new information during learning and coordinates
with long-term memory for tasks of storage and retrieval [3]. Work-
ing memory has limited capacity and can only hold information
temporarily for use. Therefore, it is most efficient when learning
is organized into meaningful chunks and when learners have de-
veloped fluency and automaticity for procedural knowledge. For
diverse learners, including children with learning disabilities [89],
multilingual learners [90], and children living in poverty [63], limi-
tations in working memory influence learning outcomes [17]. Long-
term memory is the capacity to encode, organize, store, retrieve,
and utilize information; in other words, it is our store of knowledge.
As with working memory, individual differences in these capacities
impact learning outcomes, particularly for learners with academic
challenges [17].

3.2 Cognitive Scaffolding
An important influence in the integration of computer science in
elementary school curricula is constructionist theory [30, 37]. Con-
structionism posits that individuals learn best when they engage
in self-directed learning, choosing their own project and learning
independently in the process, and when the project produces an
artifact that will be displayed to the public [37]. However, research
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in broader education has demonstrated that for diverse learners, a
fully inquiry-based instructional approach does not lead to optimal
learning outcomes [44, 79]. For this reason, our curriculum includes
two levels of cognitive scaffolding.

The first level of cognitive scaffolding is the Use–> Modify struc-
ture in which students learn through example code [46]. At a simple
level, access to models and opportunities for practice help to de-
velop the procedural fluency required to reduce cognitive demands
and also facilitate the development of mental models of knowl-
edge in long-term memory [52]. Further, these experiences support
development of the cognitive flexibility required for higher level
thinking and complex tasks [9] that are inherent in the complex
problem solving and creativity possible in computer science.

The second level of cognitive scaffolding is TIPP&SEE, a metacog-
nitive strategy that scaffolds elementary computer science learning.
In strategy instruction, the learners are taught memory devices for
procedures to help learners guide themselves through full explo-
ration and task completion [87]. In this case, it is a mnemonic that
serves as a scaffold for executive function. Cognitive strategy in-
struction was developed to simulate expert information processing
and self-regulation, teaching inefficient or less strategic learners
to engage in those metacognitive processes to improve learning
outcomes [65]. Strategy instruction promotes self-regulation in
ways that manage information to optimize short-term memory
and long-term storage and retrieval, thus automating procedural
knowledge [75, 85]. Metacognitive strategies can facilitate prob-
lem solving, helping students to not only grasp the foundational
knowledge and procedures, but to understand the conditions un-
der which their knowledge will be useful for problem solving and
innovation [16, 27, 51].

4 RELATEDWORK
4.1 Landscape of Computational Thinking
While there are divergent views on what computational thinking
should be [21, 22, 93, 98], there is broad consensus that computa-
tional thinking is a way of thinking used to develop solutions in
a form executable by “information processing" or “computational
agents" [19]. Similarly, there is wide agreement on these five main
elements of computational thinking: algorithmic thinking, logical
thinking, abstraction, generalization, and decomposition [83]. In
this study, we specifically focus on one core element of CT: algo-
rithmic thinking. Algorithmic thinking is the idea that solutions
to problems are generalizable, namely that such solutions (or al-
gorithms) are composed of instructions that, if followed precisely,
will yield an answer [19]. Crucially, algorithmic thinking posits
that one cannot have a true grasp of computation if one cannot
give instructions using sequence, selection, and iteration, based on
Turing’s result on the essence of computation and Turing complete-
ness [4, 8, 19].

As such, the curriculum used in this study covers three intro-
ductory CT concepts: sequence, loops, and events (one way to ac-
complish selection in Scratch programming). These three concepts
and their instructional sequence were drawn from the K-8 learning
trajectories [71] and frameworks for K-12 computing education
used nationally in the United States [1] and United Kingdom [18].

4.2 Cognitive Abilities in Elementary
Education

In education, the assessment of cognitive skills has been consid-
ered important in research and practice for purposes such as the
identification of disabilities, as a contributor to the understanding
of how children learn, and as a predictor of learning outcomes
with the intention of improving instruction and outcomes [15]. A
significant amount of research over the years has examined the
relationships between cognitive skills such as short-term working
memory, long-term memory, processing speed, fluid reasoning, au-
ditory and visual processing, and general knowledge [15]. While a
thorough summary is beyond the scope of this paper, select exam-
ples from disciplines with potential relevance to computer science
will be presented.

In reading, expert readers employ metacognitive processes be-
fore, during, and after reading in order to comprehend text [65].
Good readers rely on short-term memory to compare new infor-
mation to information previously read in the text, and to relate
and integrate it with information that is already known. Executive
functions of self-monitoring guide good readers to know when they
don’t know, need to re-read, rehearse, slow down, or speed up. Good
readers are metacognitive and strategic in their reading processes,
intentionally, unconsciously, and intuitively. Experts in math are
highly strategic and have learned or developed many strategies
from which to draw [84]. In addition to expertise in calculation,
these individuals have strong reasoning skills, cognitive flexibility,
processing speed, advanced skills in estimation, and elaborated vi-
sual representations of numeric information, although measurable
limitations in visuo-spatial information processing can mediate
this [84]. Additionally, problem solving opportunities and neces-
sities are present in reading, math, and all academic/disciplinary
content areas, including computer science. Problem solving is the
cognitive process that occurs when the learner must address an
issue for which there is not an evident solution at hand to attain a
goal [53]. In general, expert problem solvers have a fund of domain
knowledge from which to draw. They can easily break complex
problems into their sub-components, can hold and manipulate use-
ful information in working memory, can relate patterns and critical
features to other known problem/solutions, and focus on the big
picture rather than details. They are faster in employing their pro-
cedural knowledge and integrating familiar information toward the
novel solution [88].

Since reading,math, and problem-solving skills have been demon-
strated to be associated with computer science learning [34, 35, 48,
66, 78], research in these related disciplines can help to inform
research and practice in computer science as well. To date, lim-
ited research into the relationships between cognitive abilities and
computer science, especially at the elementary level, exists.

4.3 Cognitive Science in Computing Education
Elementary computer science is a new, developing field. Research
into the relationships between cognitive science and computer sci-
ence learning have garnered increasing interest in the community
and exploration is underway. While there has been little work in
cognitive abilities in computer science education, there has been
research on cognitive load theory. Cognitive load theory seeks
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to support the learning of complex tasks by using knowledge of
cognitive architecture to guide instructional design. Specifically,
cognitive load theory seeks to address limitations in working mem-
ory and optimize capacity of long-term memory [60]. As early as
2000, computer science researchers began to consider how cogni-
tive load theory would apply to computer science education [96].
Further, Dr. John Sweller, the theorist who first conceptualized Cog-
nitive Load Theory, presented an invited talk at the 2016 SIGCSE
technical symposium, Cognitive Load Theory and Computer Science
Education [91].

Morrison and Guzdial [56] drew on work by Leppink et al. [47]
to develop and test a subjective, self-report measure of cognitive
load specifically for computer science education. Morrison and
colleagues [57] also began exploring instructional design properties
from math and science, such as the use of subgoal labels to reduce
cognitive load. They found mixed results, suggesting that computer
science may require different solutions than those that have been
effective for math and science learning. Nonetheless, these studies
were conducted at the university level.

At the pre-university level, Seufert presented a conceptual pa-
per, bridging research across self-regulated learning and cognitive
load [85]. Seufert includes discussion of strategy instruction to re-
duce cognitive load, and is germane to our work with metacognitive
strategy instruction for this purpose. Sands also argued for apply-
ing cognitive science and attending to cognitive load and working
memory in the K-12 computer science classroom [80]. While not a
full study, Sands’ article recommended instructional strategies, such
as modeling, worked examples, and peer collaborations, as scaf-
folds [80]. More recently in 2019, Mutlu-Bayraktar and colleagues
published a systematic review of studies that explored cognitive
load in multimedia learning [58].

None of the previous studies, however, addressed elementary
computer science or studied cognitive abilities specifically. By ex-
amining children’s cognitive abilities, particularly working and
long-term memory, we can better understand the best ways to opti-
mize instructional design to maximize opportunities for developing
complex thinking and problem solving skills [61]. This study ad-
dresses this research gap by focusing specifically on elementary
computer science education and potential associations between cog-
nitive abilities that are relevant and believed to underlie cognitive
load in computer science learning [61].

5 METHODS
5.1 Scratch Act 1
Over approximately six months, students were instructed with
Scratch Act 1 [2], an introductory computational thinking (CT) cur-
riculum modified from the Creative Computing curriculum [13], in
45-60 minute sessions every 1-2 weeks. One version of the curricu-
lum was scaffolded using the TIPP&SEE learning strategy. Scratch
Act 1 is comprised of three modules, covering the CT concepts of se-
quence, events, and loops. Each module started with Use–>Modify
projects to introduce the CT concept, where they learn from exam-
ple code. Each module led up to a Create project, where students
programmed from a blank slate (see Table 1). Sands’ recommenda-
tions for attending to cognitive load in CS education were integral

components of our curriculum [80]. All materials were available in
both English and Spanish.

Module Project Use-Modify-Create
Sequence Name Poem Use–>Modify

Ladybug Scramble Use–>Modify
5 Block Challenge Create

Events Events Ofrenda Use–>Modify
Parallel Path Use–>Modify
About Me Create

Loops Build a Band Use–>Modify
Interactive Story Create

Table 1: Scratch Act 1 Modules

5.2 Study Design
Fifteen teachers of fourth-grade students (ages 9-10) were recruited
from a large, urban school district in the United States with a high
percentage of students from marginalized backgrounds. The teach-
ers were trained with the same professional development to teach
the Scratch Act 1 curriculum A total of 16 classrooms participated
in the study, six of which were bilingual classrooms. Each classroom
was assisted by an undergraduate CS researcher.

Teachers were randomly assigned to either the treatment or the
control condition, resulting in five English-only and three bilingual
English and Spanish classrooms in each condition. The eight teach-
ers in the treatment condition were taught the TIPP&SEE learning
strategy, which scaffolds student exploration of example programs
for Use –> Modify activities. Classrooms in the control condition
were taught Scratch Act 1 and completed the same Use–>Modify
tasks but without the TIPP&SEE worksheets guiding them through
familiarization with and exploration of the example code.

There were a total of 92 and 101 students in the TIPP&SEE (TS)
and control (C) conditions, respectively. Due to the student popula-
tion in this study, we tried our best to ensure that both conditions
had as similar proportions as possible of students with: economic
challenges (76.1% TS vs 89.2% C), multilinguality (designated “Lim-
ited English Proficiency" by the school district; 27.2% TS vs 51.5% C),
disabilities (17.4% TS vs 14.9% C), and below-grade level proficien-
cies in reading (58.7% TS vs 45.5% C) and math (59.8% TS vs 57.8%
C). These factors were chosen based on research on what factors
influence cognitive function in general and computer science per-
formance in particular. More specifically, factors of economic chal-
lenge and poverty such as nutrition [67], stress [25], trauma [11],
neighborhood-wide poverty [36], rural and urban poor environ-
ments [95], refugee status [11], family factors [36], food insuffi-
ciency, housing, and employment [20] all impact cognitive develop-
ment and function. Similarly, economic challenges [26, 31, 50, 79],
disabilities [41], English proficiency [66], and reading and math
skills [35, 48, 78] all influence computer science performance.

5.3 Computational Thinking Assessment
Design

Students took two pen-and-paper assessments, the first one after
the Events & Sequence module (E&S) and the second one after the
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Loops module (L). Each assessment consisted of a mix of multiple-
choice, fill-in-the-blank and open response questions, and were
designed to take 20-30 minutes to complete.

Following the Evidence-Centered Design framework [54], as-
sessments were designed based on K-8 learning trajectories for
elementary computing [71]. For face validity, questions were first
tested with students in the previous school year and then revised
based on teacher and student feedback for use in this current study.
At each stage, questions were iteratively reviewed by a team of
researchers and practitioners from CS and education. We conducted
Cronbach’s alpha and exploratory factor analyses on the questions
in this current study; we do not include analyses from the student
trial in the previous school year because questions were revised
between the school years.

Cronbach’s alpha (𝛼) was calculated for internal reliability be-
tween questions on the same topic. Between the questions and
sub-questions on both assessments, 5 items targeted events (𝛼=.72),
4 items targeted sequence (𝛼=.7), and 9 items targeted loops (𝛼=.85).
A question with parallel loop execution was removed from the
reliability calculation because it reduced the reliability of the loops
questions to𝛼=.82, indicating that it did not cover the same concepts
as the other questions.

Due to the limitations of Cronbach’s alpha [92], we complement
it with an exploratory factor analysis (EFA) on student scores to
characterize the underlying structure of our questions, i.e. which
questions tested the same concept and the same level of Bloom’s
Taxonomy, a framework for classifying learning objectives [7]. We
conducted an EFA for two reasons: (1) to further verify the similarity
of questions with another method due to the limits of Cronbach’s
alpha [92] and (2) to discuss similar questions collectively in our
results because an individual question is not sufficient to show an
understanding of a concept. The EFA was conducted on all student
scores in order to have enough responses per question for statistical
analysis.

Questions with multiple parts were treated as separate items.
We excluded two questions from this analysis: a question on paral-
lelism because of the Cronbach’s alpha results, and an extra credit
question on nested loops because that concept was not explicitly
covered in the curriculum. A maximum likelihood factor analysis
was conducted with six factors, the minimum number of factors
that was deemed sufficient, and the varimax rotation, which ro-
tates the orthogonal basis so that the factors are not correlated.
The minimum number of factors was determined using both the
Kaiser’s eigenvalue-greater-than-one criterion [42] and the scree
plot elbow [10]. Based on the factor loadings from this analysis, we
drafted a test blueprint. Table 2 shows the questions accounted by
each of the five factors, their loading and their variance. We only
included five of the six factors, as the last factor only accounted for
one question. The remaining five factors accounted for 12 of the 18
questions included in the factor analysis.

5.4 Woodcock-Johnson IV Tests of Cognitive
Abilities

The Woodcock-Johnson IV Tests of Cognitive Abilities (WJ IV) [81,
82] is a standardized, norm-referenced test of cognitive abilities
that was developed based upon the Catell-Horn-Carroll theory

Remember Understand
Scratch E&S Q2, Q3
Basics (Loading=1.07; —

Variance = 0.06)
E&S Q4a, Q4b

Events — (Loading=1.90;
Variance = 0.11)
E&S Q6, Q7

(Loading=2.08;
Sequence — Variance = 0.12)

L: Q5a,b,c
(Loading=1.84;
Variance = 0.11)
L: Q1, Q2, Q4
(Loading=1.90;

Loops — Variance = 0.11)
L: Q5a,b,c

(Loading=1.84;
Variance = 0.11)

Table 2: Test Blueprint with Concept & Bloom’s Level for
Events & Sequence (E&S) and Loops (L) Assessments

of intelligence [29], and is appropriate for measuring cognitive
abilities in persons from age two to 80+ years of age. These cognitive
tests are not malleable to instruction, but are malleable to child
development, maturity, and age. The purpose of these assessments
is to gather information that allows comparison of an individual to
others of similar age on important cognitive abilities. Together with
other sources of information, these types of assessments contribute
to the identification of exceptionalities, including "giftedness" and
disability. When used ethically and properly, the WJ IV cognitive
tests are less flawed, more theoretically grounded, and more fair
than other methods of diagnoses [6].

For the purposes of this study, graduate students in school psy-
chology who had been trained to administer this test with fidelity
conducted individual assessments of participants in their school
settings. Students in our sample were tested before or early in the
computer science instructional instruction. All assessments were
audio-recorded and were dual scored. Disagreements in scoring
were resolved through discussion, with resulting inter-rater agree-
ment of 100%. Inter-rater agreement was supervised by the second
author, a licensed diagnostician. Four subtests were administered
to each participant.

5.4.1 Numbers Reversed. Numbers Reversed is a 34 item subtest of
auditory, short-term working memory. For Grade 4, administrators
begin with Sample Item A, and items are presented by audiotape.
Participants listen to an increasing series of numbers that do not
follow a predictable sequence. For example, Sample Item A includes
2 unrelated numbers, and item 34 includes 8. They are asked to
repeat the numbers in reverse order. This test assesses auditory
memory that requires both attention andmanipulation (recoding) of
new information and is a complex span task. This test was selected
because research in math and reading has demonstrated that short-
term memory is highly predictive of performance [14, 55]
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5.4.2 Verbal Attention. Verbal Attention is a 36 item subtest of
auditory, short-term working memory. For standardization, each
item is presented using an audiotape included in the test kit. Partic-
ipants listen to an increasing series of words that include animal
names and numbers, and are then asked to answer a question. For
example, item 9 includes 1 word, while item 36 includes a combi-
nation of 5 animal names and numbers. This subtest assesses the
capacity of auditory memory, with a focus on attention. In this
test, participants are asked to hold information in working mem-
ory, and use their executive search skills to identify the correct
information to answer a question, assessing abilities in directing
attention to needed information that is present in working memory.
This subtest was selected because research in math and reading
has demonstrated that short-term memory one of the strongest
predictors of performance [14, 55].

5.4.3 Pair Cancellation. Pair Cancellation is a 49 item, 3-minute,
timed subtest of accuracy in pattern recognition and scanning abili-
ties. In this test, participants scan lines of pictures to identify specific
patterns, for example, a picture of a dog, followed by a picture of
a ball, and directed to circle each instance. This subtest measures
aspects of visual/spatial perception, information processing speed,
attention and concentration. This subtest was selected because of
its relationship to basic reading skills such as rate and fluency [62]
and math calculation [14].

5.4.4 Visual-Auditory Learning. Visual-Auditory Learning is a 7
item subtest of paired associates memory, one aspect of long-term
storage and retrieval. In this subtest, participants are shown black
and white rebuses and asked to associate each with a word/name.
Initially, they are asked to name single rebuses, but as the assess-
ment proceeds, are asked to “read” sentences of sequences of re-
buses. This task represents learning, in that it requires short-term
working memory to hold and organize the novel information, test-
ing abilities in encoding, storage and retrieval of the new learning.
This test requires students to organize, story and retrieve informa-
tion during learning. The child must remember the word they are
taught for each rebus in order to read the sentence. This subtest was
chosen because of the importance of encoding to math and read-
ing [62], and because research has demonstrated contributions of
long-termmemory in math and reading learning and outcomes [86],
including for problem-solving [51]. Maximizing long-term memory
is a goal of cognitive load theorists, so understanding children’s
abilities is important [60]. This test is less common in research, but
is commonly used in assessment of children with and at risk for a
learning disability.

5.5 Data Analysis
To understand how different cognitive abilities relate to CS/CT
performance (our first research question), we first separated our
data by groups of TIPP&SEE and control students because of previ-
ous work showing that TIPP&SEE was associated with better CT
performance [77]. We then ran Spearman correlations between the
cognitive abilities subtest scores and scores on their end-of-module
assessments. We chose the non-parametric Spearman correlation
because not all of the assessment scores met assumptions of normal-
ity and linearity. We provide 𝜌 values for correlation strength and 𝑝

values for statistical significance, with 𝑝 < .05 as our threshold. We
also interpreted 𝜌 values based on guidelines from Hinkle et al [39],
where 𝜌 = 0 − 0.3 is very weak, 𝜌 = 0.3 − 0.5 is weak, 𝜌 = 0.5 − 0.7
is moderate, 𝜌 = 0.7 − 0.9 is strong, and 𝜌 = 0.9 − 1 is very strong.

To examine how much TIPP&SEE supports students with vari-
ous levels of cognitive ability and in which CT concepts (our second
and third research questions), we first ranked student scores accord-
ing to classifications from the Woodcock-Johnson IV test manual
(Table 3). The distribution of all student scores followed a normal
distribution, with the number of students in each classification
decreasing the farther the scores were from the mean. For some
subtests, classifications on either tails of the distribution only had
one student (see Table 4). As a result, we combined ranks of stu-
dents with scores in the "Very Superior" and "Superior" into one
"Superior" classification and students with scores in the "Very Low"
and "Low" into one "Low" classification, in order to have cell sizes
large enough for analysis. For the pair cancellation subtest, there
was only one student in the "Superior" classification and was there-
fore excluded from analysis. While the correlations in the previous
analysis allow for a more fine-grained picture, this classification
allowed us to better describe students’ relative standing among
same aged peers and identify students most at-risk.

Scores 40 and below were considered to be outliers and were
removed from analysis as they may not represent a fair example of
their cognitive abilities. Possible reasons for outliers include stu-
dents reaching their ceiling before maintaining the minimum score
required for each test and students being unable to pay attention to
the task for an adequate amount of time (3 minutes). Outliers could
also be due to the test environment. For example, if a student was
not able to hear the audio the first time it was presented, it could
result in them having a lower score because they could not hear
the item, nor can the examiner repeat the items. Therefore, these
extremely low scores may not be due to limitations in cognitive
ability, but instead reflective of test administration issues, including
audio difficulty, noise interference, or hearing issues. Further, signif-
icant under-performance may be a result of student disengagement
with the test conditions. Low student motivation and interest or
lack of rapport with the test administrator can influence test re-
sults. Additionally, the WJ IV Tests are culturally and linguistically
loaded, meaning that children who have limited English proficiency
may struggle with the instructions of the test and may score lower
than their actual ability due to an inability to understand the test
directions and task. Table 4 shows the total number of students,
as well as students with disabilities, English Language Learners
(as designated by the school district), and students with economic
disadvantages in each WJ IV classification.

Comparing across conditions (TIPP&SEE and Control) and cog-
nitive ability classifications (Low, Low Average, Average, High
Average, and Superior), we transformed both aggregate and individ-
ual question assessment scores with the Aligned Rank Transform
(ART), which enables non-parametric factorial analyses, before run-
ning an ANOVA F-test [38, 99]. A non-parametric transformation
was chosen because of small cell sizes in the WJ IV classifications.
Type III sum of squares was employed to account for unequal cell
sizes and estimated marginal means were used for post-hoc com-
parisons. For statistical significance, we provide 𝐹 and 𝑝 values
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for both condition and WJ IV classification. For practical signifi-
cance [45, 72], we also provide the partial eta squared (𝜂2𝑝 ) effect
size. The effect size specifies the magnitude of the observed effect
or relationship between variables [49]. 𝜂2𝑝 measures the proportion
of the total variance in a dependent variable (DV) that is associated
with the membership of different groups defined by an independent
variable (IV) [12]. For example, if an IV has a 𝜂2𝑝 of 0.25, that means
that 25% of a DV’s variance is associated with that IV.

WJ IV Standard Score Percentile Rank
Very Superior 131 & above 98 to 99.9

Superior 121 to 130 92 to 97
High Average 111 to 120 76 to 91

Average 90 to 110 25 to 75
Low Average 80 to 89 9 to 24

Low 70 to 79 3 to 8
Very Low 41 to 69 0.1 to 2

Extremely Low 40 & below Outliers
Table 3: Woodcock Johnson IV (WJ IV) Classifications

6 RESULTS
To address our first research question, we first outline the results
from our analysis of the correlations between cognitive ability
scores and performance on question sets covering the same CT
concepts. We next delineate the outcomes from comparing the com-
putational thinking performance of students in different Woodcock-
Johnson IV classifications, addressing our second and third research
questions.

6.1 Correlations between Cognitive Abilities &
CT Performance

We detail the correlations found between cognitive abilities and per-
formance based on the test blueprint of questions and CT concepts
developed through the exploratory factor analysis (EFA) described
in Section 5. EFA enables us to discuss questions covering the same
CT concept as a collective; the following results are organized based
on CT concept. A summary of the correlations is shown in Table 5.

Finding 1: Pair Cancellation, a measure of pattern recognition, was
not correlated with better performance on any CT concept.

There were almost no correlations between scores on the Pair
Cancellation subtest, which measures pattern recognition and scan-
ning abilities, and scores on CT assessment questions. There was
only a very weak correlation between Pair Cancellation scores and
scores on one question on Events (Q4b) (𝜌 = .232, 𝑝 = .03) for the
TIPP&SEE students. However, given that none of the other ques-
tions were correlated and that classification over Pair Cancellation
subtest scores were not statistically-significant (see Section 6.2), this
very weak correlation on the single question likely does not imply
a relationship between the skills measured by the Pair Cancellation
subtest and learning the CT concepts covered in this curriculum.

Finding 2: Measures of working memory and long-term retrieval
were weakly correlated with better performance on CT questions, with
the correlations increasing with more complex CT concepts.

6.1.1 Scratch Basics. There were two questions on the Events &
Sequence assessment that covered the basics of Scratch (Table 2).
Q2 asked students to identify the last block in script, while Q3
asked students to identify all the scripts that ran when the sprite
was clicked. There was a weak correlation between the Numbers
Reversed subtest (a measure of working memory) and scores on Q2
for TIPP&SEE students (𝜌 = .323, 𝑝 = .0022). For control students,
there were very weak correlations between Q3 scores and both
measures of working memory, Numbers Reversed (𝜌 = .270, 𝑝 =

.0077) and Verbal attention subtests (𝜌 = .277, 𝑝 = .0063). There was
a greater correlation between Q3 scores and scores on the Visual-
Auditory Learning subtest, which measures long-term retrieval
(𝜌 = .431, 𝑝 = 1.18 × 10−5).

6.1.2 Events. Q4a and Q4b in the Events & Sequence assessment
covered an understanding of events (Table 2). Looking at a Scratch
stage with two sprites that resulted from a green flag click, stu-
dents were asked to identify the script that ran for each sprite. For
TIPP&SEE students, performance on both events questions were
very weakly correlated with one of the working memory measures,
Numbers Reversed (Q4a:𝜌 = .218, 𝑝 = .043; Q4b:𝜌 = .237, 𝑝 = .027).
They were more correlated with the other working memory mea-
sure, Verbal Attention (Q4a:𝜌 = .335, 𝑝 = .0015; Q4b:𝜌 = .391, 𝑝 =

.00018), and the long-term retrieval measure, Visual-Auditory Learn-
ing (Q4a:𝜌 = .420, 𝑝 = 5.09 × 10−5; Q4b:𝜌 = .416, 𝑝 = 6.14 × 10−5).
For control students, only the long-term retrieval measure was
very weakly correlated with scores on Events questions (Q4a:𝜌 =

.219, 𝑝 = .031; Q4b:𝜌 = .235, 𝑝 = .021).

6.1.3 Sequence. The two questions on sequence from the Events
& Sequence assessment (Q6 and Q7) asked students to describe
the order in which the blocks in an example script would run. For
TIPP&SEE students, there was a very weak correlation between
one of the working memory measures, Numbers Reversed, and
performance on Q6 (𝜌 = .263, 𝑝 = .014). Control students showed a
very weak correlation between the other working memory measure,
Verbal Attention, and performance on Q7 (𝜌 = .235, 𝑝 = .021).
Similar to the questions on Events, they were more correlated with
the Visual-Auditory Learning subtest in both TIPP&SEE (Q6:𝜌 =

.222, 𝑝 = .039; Q7:𝜌 = .294, 𝑝 = .0057) and control conditions
(Q6:𝜌 = .223, 𝑝 = .022; Q7:𝜌 = .361, 𝑝 = .0003).

6.1.4 Loops. Q1 from the Loops assessment asked students to
identify the number of times an example loop would repeat. Q2 and
Q4 from the same assessment asked students to unroll a loop, but
with different answer choices. Q2 asked about a single-block loop
repeating 4 times and had the answer choices of the block in the
loop repeated 1, 2, 3, or 4 times. Q4 asked about a double-block loop
repeating 3 times and had the answer choices of the two blocks
alternating 3 times (the correct execution) and a script with the
first block repeated 3 times followed by the second block repeated 3
times (a common misconception) [35]. Q5a, b, and c from the Loops
assessment covered both sequence and loops, asking students to
identify code that ran before, in, and after a loop.

For questions that only covered loops (Q1, Q2, and Q4), there
was only one very weak correlation between Q4 scores and scores
on one of the working memory measure, Verbal Attention, for
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WJ IV Total Disability ELLs Econ Disadvantage
NR VA PC VAL NR VA PC VAL NR VA PC VAL NR VA PC VAL

Very Superior 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
Superior 8 7 1 3 0 1 0 0 2 2 1 1 7 5 0 3

High Average 27 20 6 12 3 2 1 2 8 2 1 1 20 14 6 10
Average 96 107 107 110 11 10 12 16 33 40 46 41 83 93 92 92

Low Average 33 29 33 33 6 10 4 5 15 15 14 14 30 29 32 30
Very Low 7 5 7 0 3 5 2 0 3 4 1 0 7 5 4 0

Extreme Low 2 2 1 0 1 0 1 0 1 1 1 0 2 2 1 0
Table 4: Students in EachWJ IV Classification for all 4 cognitive subtests (Numbers Reversed (NR), Verbal Attention (VA), Pair
Cancellation (PC), & Visual-Auditory Learning (VAL))

Figure 2: CommonMisconception ofMulti-Step Loop Execu-
tion

TIPP&SEE students (𝜌 = .240, 𝑝 = .027). In contrast, for con-
trol students, performance on Q2 and Q4 were weakly correlated
with both working memory measures, Numbers Reversed (Q2:𝜌 =

.306, 𝑝 = .0024; Q4:𝜌 = .238, 𝑝 = .019) and Verbal Attention
(Q2:𝜌 = .399, 𝑝 = 5.75 × 10−5; Q4:𝜌 = .317, 𝑝 = .0017). Visual-
Auditory Learning, a measure of long-term retrieval, was weakly
correlated with all loops questions for control students (Q1:𝜌 =

.258, 𝑝 = .011; Q2:𝜌 = .372, 𝑝 = .00019; Q4:𝜌 = .381, 𝑝 = .00013).
For questions covering both sequence and loops (Q5a-c), there
were weak correlations between scores on these questions and
measures of both working memory and long-term retrieval in both
TIPP&SEE (Q5a:𝜌 = .347, 𝑝 = .0011; Q5b:𝜌 = .342, 𝑝 = .0013;
Q5c:𝜌 = .365, 𝑝 = .00059) and control conditions (Q5a:𝜌 = .358, 𝑝 =

.00034; Q5b:𝜌 = .468, 𝑝 = 1.52 × 10−6; Q5c:𝜌 = .360, 𝑝 = .00032).

6.1.5 Discussion. With the exception of the Pair Cancellation sub-
test measuring pattern recognition, the correlations between cogni-
tive skill measures and CT performance grew with the complexity
of CT concepts, with more correlations of very weak magnitude
(𝜌 < .3) for questions covering Scratch Basics, Events, and Sequence
to majority of weak correlations (𝜌 = .3 − .5) for questions with
loops.

It is worth noting that for the questions on events, TIPP&SEE
student scores were correlated with both measures of working
memory and the measure of long-term retrieval, unlike the control
students, whose scores were only correlated with the measure of

long-term retrieval. The questions on events were the only ones
that used the vocabulary word "Stage" to refer to the area in the
Scratch interface where students see the output of their code and
showed students an image of the Scratch stage. Recalling domain-
specific vocabulary may have loaded on students’ working memory
and long-term retrieval, independent of the computational thinking
concept covered by that question. Acquiring disciplinary vocabu-
lary is often a challenge that impedes learning for diverse learners
in STEM content [94]. Unlike their typically developing peers, di-
verse learners may benefit from pre-teaching, explicit instruction,
and increased exposure to learn new words well enough for them
to be useful. Further, while related images may be paired with key
information to enhance learning, visual information that requires
interpretation can be more challenging for many learners [94]. Re-
lated to Scratch, students need opportunities to see and practice
with the graphical representations in the platform, and to pair those
with their meaning. In Scratch, the opportunities to use these for
their own purposes should also enhance their vocabulary. For ques-
tions 4a and 4b, it is possible that neither the word "Stage" nor its
image conveyed meaning to students, given limited exposure to
this concept in their instruction [73].

It is also noteworthy that for the questions on loops, there was
only one very weak correlation between one working memory
measure and one question in the TIPP&SEE condition, while in the
control condition, both working memory and long-term retrieval
measures were correlated with all but one question, which was
still correlated with long-term retrieval. Further, for the most ad-
vanced questions that required knowledge of both sequence and
loops, there were weak, with some bordering on moderate, cor-
relations with both working and long-term retrieval measures in
both conditions. While TIPP&SEE may have provided enough ad-
ditional scaffolding to Use–>Modify–>Create for loops and easier
CT concepts, more support may be needed for more complex CT
concepts.

6.2 TIPP&SEE Support across Cognitive
Abilities

We first report the results from comparing total scores from two
end-of-module assessments across WJ IV classifications for each
of the cognitive subtests. We follow with results from analyzing
different sets of questions that cover different CT concepts to un-
derstand which concepts TIPP&SEE provides support for. Results
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Concept Q Numbers Reversed Verbal Attention Visual-Auditory Learning
TS C TS C TS C

Scratch E&S Q2 .323** — — — — —
Basics E&S Q3 — .270** — .277** — .431**
Events E&S Q4a .218* — .335** — .420** .219*

E&S Q4b .237* — .391** — .416** .235*
Sequence E&S Q6 .263* — — — .222* .223*

E&S Q7 — — — .235* .294** .361**
L Q1 — — — — — .258*

Loops L Q2 — .306** — .399** — .372**
L Q4 — .238* .240* .317** — .381**

Sequence L Q5a .442** .321** .410** .258* .347** .358**
& Loops L Q5b .432** .334** .268* .340** .342** .468**

L Q5c .285** .285** .276* .331** .365** .360**
∗𝑝 < .05;∗∗ 𝑝 < .01

Table 5: Correlations between Cognitive Skills & CT Performance on Questions from Events & Sequence (E&S) and Loops (L)
Assessments

from different questions are discussed collectively based on the CT
concepts they cover (Table 2).

Finding 3: For both TIPP&SEE and control conditions, there was
no statistically-significant effect of the Pair Cancellation subtest, a
measure of pattern recognition, on CT performance.

Figures 3a and 3b illustrate the distribution of scores in each Pair
Cancellation subtest classification within condition, in ascending
order of classification from "Low" to "High Average". The "Superior"
classification was omitted in the analysis as there was only one
student in that category.

Analysis across classifications for the Pair Cancellation subtest
revealed no statistically-significant effect on total scores on ei-
ther assessment (E&S: 𝐹 (1, 161) = 2.19, 𝑝 = .0918, L: 𝐹 (1, 159) =

2.36, 𝑝 = .0739). There was only a statistically-significant effect of
condition on aggregate scores on both the Events & Sequence and
Loops assessments (E&S: 𝐹 (1, 161) = 8.63, 𝑝 = .0038, 𝜂2𝑝 = .0509, L:
𝐹 (1, 159) = 8.08, 𝑝 = .0051, 𝜂2𝑝 = .048). Because of this, further anal-
ysis comparing Pair Cancellation classifications and CT questions
was not conducted.

Finding 4: When using TIPP&SEE, students classified as having
low scores on measures of working memory and long-term retrieval
performed equal or better than control students classified as having
average scores.

6.2.1 Numbers Reversed. Comparing across classifications based
on theNumbers Reversed subtest, therewere statistically-significant
effects of both condition and classification on the scores from both
the Events & Sequence (Condition: 𝐹 (1, 163) = 8.32, 𝑝 = .0045, 𝜂2𝑝 =

.0486; Classification: 𝐹 (4, 163) = 6.20, 𝑝 = .00011, 𝜂2𝑝 = .132) and
Loops assessments (Condition: 𝐹 (1, 161) = 14.97, 𝑝 = .00016, 𝜂2𝑝 =

.0851; Classification: 𝐹 (4, 161) = 8.99, 𝑝 = 1.39 × 10−6, 𝜂2𝑝 = .183).
Post-hoc analyses revealed no statistically-significant differences
in performance between TIPP&SEE students with low Number
Reversed scores and control students with low average (E&S: 𝑡 =
−.924, 𝑝 = .357, L: 𝑡 = −.70, 𝑝 = .485), average (E&S: 𝑡 = −.836, 𝑝 =

.405, L: 𝑡 = −.345, 𝑝 = .731), high average (E&S: 𝑡 = −.997, 𝑝 = .320,

(a) Events & Sequence Assessment

(b) Loops Assessment

Figure 3: Performance across Pair Cancellation Classifica-
tion

L: 𝑡 = −.479, 𝑝 = .633), and superior (E&S: 𝑡 = −1.38;𝑝 = .170, L:
𝑡 = −.253, 𝑝 = .80) scores on the Numbers Reversed subtest. Fig-
ures 4a and 4b depict the distribution of scores for each Numbers
Reversed subtest classification nested within each condition, in
increasing order from "Low" to "Superior".



ICER 2021, August 16–19, 2021, Virtual Event, USA Jean Salac, Cathy Thomas, Chloe Butler, and Diana Franklin

(a) Events & Sequence Assessment

(b) Loops Assessment

Figure 4: Performance across Numbers Reversed Classifica-
tion

6.2.2 Verbal Attention. Our analysis across Verbal Attention sub-
test classification showed statistically-significant effects of both con-
dition and classification on aggregate scores on Events & Sequence
(Condition: 𝐹 (1, 162) = 4.14, 𝑝 = .043, 𝜂2𝑝 = .0249; Classification:
𝐹 (4, 162) = 6.59, 𝑝 = 6.05 × 10−5, 𝜂2𝑝 = .140) and Loops assessments
(Condition: 𝐹 (1, 160) = 9.49, 𝑝 = .0024, 𝜂2𝑝 = .0559; Classification:
𝐹 (4, 160) = 7.67, 𝑝 = 1.12 × 10−5, 𝜂2𝑝 = .161). Unlike in the pre-
vious working memory measure Numbers Reversed, TIPP&SEE
students with low Verbal Attention scores did not perform as well
as control students with average scores on the Events & Sequence
assessment. Instead, they out-performed them, performing better
than control students with low average (𝑡 = −2.57;𝑝 = .011), aver-
age (𝑡 = −2.073;𝑝 = .039), and high average (𝑡 = −2.39;𝑝 = .018)
scores on the Verbal Attention subtest. Results were more similar
to Numbers Reversed in the Loops assessment, with TIPP&SEE
students who had low Verbal Attention scores performing as well
as control students with low average (𝑡 = −.867, 𝑝 = .387), average
(𝑡 = −.560, 𝑝 = .576), and high average (𝑡 = −.640, 𝑝 = .523) Verbal
Attention scores. Figures 5a and 5b show the distribution of scores
for each Verbal Attention subtest classification for each condition.

6.2.3 Visual-Auditory Learning. In our analysis across Visual-Auditory
Learning subtest classifications, there were statistically-significant
effects of both condition and classification on performance on both
Events & Sequence (Condition: 𝐹 (1, 164) = 5.21, 𝑝 = .0237, 𝜂2𝑝 =

.0308; Classification: 𝐹 (4, 164) = 5.41, 𝑝 = .00041, 𝜂2𝑝 = .117) and

(a) Events & Sequence Assessment

(b) Loops Assessment

Figure 5: Performance across Verbal Attention Classifica-
tion

Loops assessments (Condition: 𝐹 (1, 162) = 5.97, 𝑝 = .016, 𝜂2𝑝 =

.0355; Classification: 𝐹 (4, 162) = 5.77, 𝑝 = .00023, 𝜂2𝑝 = .12). Similar
to the working memory measures, post-hoc comparisons indicated
that TIPP&SEE students with lowVisual-Auditory scores performed
as well as control students with low average (E&S: 𝑡 = −1.18, 𝑝 =

.239, L: 𝑡 = −.976, 𝑝 = .330), average (E&S: 𝑡 = −1.01, 𝑝 = .316, L:
𝑡 = −.632, 𝑝 = .528), and high average (E&S: 𝑡 = −1.79, 𝑝 = .0755, L:
𝑡 = −.488, 𝑝 = .626) scores. Figures 6a and 6b portray the distribu-
tion of scores for each Visual Auditory-Learning classification in
each condition.

Finding 5: For questions on events, there was a statistically-significant
effect of Visual-Auditory Learning classification, not condition, on CT
performance.

Wenow turn our attention from aggregate performance to perfor-
mance on specific concepts. Therewas only a statistically-significant
effect of visual-auditory learning, a measure of long-term retrieval,
on performance on both questions covering events (Table 6). There
was no effect of condition on performance on either question (Ta-
ble 6). This may be due to the use of the vocabulary word "Stage"
to describe the graphical output of Scratch code, which could have
relied on students’ long-term retrieval. In contrast, comparisons
across the two measures of working memory were ambiguous,
where the two Events questions had divergent outcomes.
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(a) Events & Sequence Assessment

(b) Loops Assessment

Figure 6: Performance across Visual-Auditory Learning
Classification

Finding 6: There were statistically-significant effects of both condi-
tion and Verbal Attention classification on performance on questions
covering loops.

When contrasting across one of the working memory measures,
Verbal Attention, we found statistically-significant effects of both
condition and classification on performance on Loops questions
(Table 6). This may be early evidence for TIPP&SEE support for the
concept of loops and for the role of working memory in learning
this concept. On the other hand, comparisons across the other
working memory measure, Numbers Reversed, and the long-term
retrieval measure, Visual-Auditory Learning, were mixed, with
varying outcomes for each question.

Finding 7: Results for the rest of the CT concepts were inconclusive.
Results were mixed for the questions covering the other CT con-

cepts, with disparate outcomes for questions on the same concept.
Of the questions covering the basic syntax and semantics of Scratch,
the effects of both conditions and cognitive score classifications
were not consistent (Table 6). As for questions on sequence, there
were no effects of both condition and classification on question
scores in comparisons across Verbal Attention classification, while
results were mixed for Numbers Reversed and Visual-Auditory
Learning (Table 6). Lastly, outcomes were ambiguous for the ques-
tions combining sequence and loops for comparisons across subtests
of both working memory and long-term retrieval (Table 6).

6.2.4 Discussion. Our analysis of TIPP&SEE support for students
with differing cognitive abilities indicated thatwhen using TIPP&SEE,

students with low scores on cognitive tests perform similarly on
summative, end-of-module assessments as students with average
scores who underwent a less scaffolded curriculum. In some as-
sessments, TIPP&SEE students with low cognitive scores even out-
performed control students with average scores or performed as
well as control students with superior scores, as was the case in
our comparison across both the working memory measures, Ver-
bal Attention and Numbers Reversed, on the Events & Sequence
assessment.

Results were less definitive when questions were broken down
by CT concept. There was a statistically-significant effect of long-
term retrieval (Visual-Auditory Learning subtest), not condition, on
performance on questions covering events only. In contrast, there
were statistically-significant effects of condition and one measure
of working memory (Verbal Attention subtest) on performance on
questions covering loops. The rest of the CT concepts had mixed
outcomes, with questions on the same concept having mismatched
outcomes.

7 DISCUSSION
We now return to our overarching research questions:

How are working memory, pattern recognition, and long-
term retrieval associated with performance on the CS/CT
concepts: events, sequence, and loops?

The correlations found overall were weaker than would be ex-
pected based on prior work which showed that cognitive abilities af-
fect learning opportunities in math, science, and reading [33, 55, 59,
100]. This may be because the scaffolding in the curriculum, either
through Use–>Modify–>Create alone or Use–>Modify–>Create
with TIPP&SEE, supported students in learning CS/CT. While the
correlations were smaller than expected, this study presents a crit-
ical first step in exploring cognitive capacity in the learning of
CS/CT in young students.

As the CT concepts grew more advanced, the correlations in-
creased between measures of cognitive skill and performance on
CT questions. For the basic CT concepts of events and sequence,
there were various correlations of very weak to weak magnitude
between measures of working memory and long-term retrieval and
performance on questions covering these concepts. With respect
to a more complex CT concept covered in this curriculum, loops,
TIPP&SEE student performance was only very weakly associated
with one working memory measure for one question. With only
one very weak correlation with only one question, it is unlikely that
a relationship between working memory and TIPP&SEE students
learning of loops. In contrast, the performance of control students
were correlated with both measures of working memory, as well as
long-term retrieval in all but the simplest loops question. Lastly, for
both groups, measures of working memory and long-term retrieval
were the most correlated with performance on the most complex
set of questions requiring a combined knowledge of both sequence
and loops. Taken together, this may be early evidence that this
curriculum was manageable for all students with scaffolding from
Use–>Modify–>Create for simpler CT topics such as events and
sequence. This also implies that with increased complexity, the
burden on cognitive abilities might require additional scaffolding,
such as TIPP&SEE, or adapted curriculum to remain accessible.
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Condition Classification

Numbers Reversed 𝐹 (1, 163) 𝑝 𝜂2𝑝 𝐹 (4, 163) 𝑝 𝜂2𝑝
Scratch Basics E&S: Q2 1.57 .213 — 4.13** .0032 .0921

E&S: Q3 9.20** .0028 .0534 6.67** 5.36 × 10−5 .0141
Events E&S: Q4a 2.14 .145 — 3.19 .0149 .0725

E&S: Q4b 1.42 .235 — 1.11 .352 —
Sequence E&S: Q6 1.46 .228 — 3.382** .00541 .0856

E&S: Q7 11.42** .000911 .0655 3.28* .0128 .0746
L: Q1 15.62** .000116 .0884 2.38 .0543 —

Loops L: Q2 .556 .453 — 3.08* .0177 .0717
L: Q4 5.54* .0198 .0333 2.68* .0338 .0624
L: Q5a 3.64 .0580 — 6.28** .000101 .135

Sequence & Loops L: Q5b 28.39** 3.28 × 10−7 .149 8.25* 4.42 × 10−6 .170
L: Q5c 7.79** .00590 .0461 5.54** .000333 .121

Verbal Attention 𝐹 (1, 162) 𝑝 𝜂2𝑝 𝐹 (4, 162) 𝑝 𝜂2𝑝
Scratch Basics E&S: Q2 4.96* .027 .0297 .658 .622 —

E&S: Q3 .909 .342 — 2.34 .058 —
Events E&S: Q4a .332 .566 — 1.54 .192 —

E&S: Q4b 2.47 .118 — 2.24 .0670 —
Sequence E&S: Q6 .320 .572 — 2.29 .0620 —

E&S: Q7 .516 .473 — 2.18 .0737 —
L: Q1 4.29* .0398 .0261 2.48* .0464 .0583

Loops L: Q2 38.27** 4.94 × 10−9 .193 5.93** .000178 .129
L: Q4 23.76** 2.61 × 10−6 .129 3.51** .00892 .0807
L: Q5a 2.49 .117 — 4.38** .00218 .0987

Sequence & Loops L: Q5b 11.83** .000745 .0688 5.49** .000361 .121
L: Q5c 2.23 .137 — 6.04** .000149 .131

Visual-Auditory 𝐹 (1, 164) 𝑝 𝜂2𝑝 𝐹 (4, 164) 𝑝 𝜂2𝑝
Scratch Basics E&S: Q2 20.09** 1.38 × 10−5 .109 1.73 .146 —

E&S: Q3 .386 .535 — 2.69* .033 .0617
Events E&S: Q4a .0398 .842 — 2.61* .0375 .0598

E&S: Q4b .408 .524 — 2.69* .0328 .0616
Sequence E&S: Q6 2.81 .0951 — 2.32 .0589 —

E&S: Q7 .552 .458 — 2.69* .0327 .0617
L: Q1 4.48* .0358 .0269 1.46 .216 —

Loops L: Q2 2.49 .116 — 2.36 .0552 —
L: Q4 6.89** .00950 .0408 4.21** .00288 .0941
L: Q5a 4.78* .0301 .0286 3.10** .0172 .0711

Sequence & Loops L: Q5b 3.64 .0582 — 5.31** .000483 .115
L: Q5c 2.68 .104 — 5.19** .000579 .114

∗𝑝 < .05;∗∗ 𝑝 < .01
Table 6: Test Statistics from Concept-Level Analysis of Events & Sequence (E&S) and Loops (L) Assessments

How much does the TIPP&SEE learning strategy support
students with differing cognitive abilities?

There were more correlations between CS/CT performance and
the Numbers Reversed subtest for students in the TIPP&SEE condi-
tion. Numbers Reversed can be considered a measure that focuses
on working memory capacity. It is a complex span task in that the
operation of reversing the sequence remembered requires active
engagement to hold and manipulate the information, and reflects
ability to control attention during tasks, an executive function.

Weaknesses in these skills would impact an individuals’ ability to
follow multi-step and complex directions and the quantity of ma-
terials that could be managed at a time. Teaching strategies such
as verbal rehearsal and visualization can support student learning.
Further accommodations would include short, simple directions,
visual cues, chunking of information to be learned, and monitoring
performance.
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For students in the Control condition, there were more correla-
tions between CS/CT scores and the Verbal Attention and Visual-
Auditory Learning subtests. The skills assessed by the Verbal At-
tention subtest, similar to the Numbers Reversed subtest, measure
working memory capacity. Uniquely, it also examines skills in hold-
ing and finding information for needed purposes, and skills in
focusing attention to sort distractors. The ability to update informa-
tion and find it in a timely fashion is important. Performance on this
subtest is predictive of academic performance, and students with
weaknesses in these capacities might require additional repetition,
limiting distractions, simplification of directions, and also strategy
instruction, including mnemonics for learning rules, patterns, and
lists of words [81]. This subtest was selected for its role in working
memory, which is predictive of performance in other academic
tasks. Further, learning, remembering, and retrieving, and using
new verbal information may be important to success in learning
CS/CT.

The Visual-Auditory Learning subtest may also be related to
learning CS/CT. This skill requires associated memory, in which
more than one type of information is learned. For example, in
Scratch programming, new vocabulary and images are organized
and stored together. The term “sprite” and the images of various
sprites provide mental models of the concept of sprites. In this
subtest, the novel information is both encoded and retrieved. For
weaknesses in this skill set, rehearsal, overlearning, shorter and
more frequent sessions, and the use of visual imagesmay strengthen
learning. Given the results across concepts, while correlations were
weak, TIPP&SEE students appeared to be more impacted by short-
term memory capacity and attention, while students in the Control
group more often were impacted by skills in holding and “looking
up” needed information for use, both in short-term working mem-
ory (Verbal Attention) and in the associative memory functions
in the encoding process that facilitate both storage and retrieval.
While this research is exploratory, it is possible that TIPP&SEE
is providing the recommended rehearsal and scaffolded practice
needed to perform the CS/CT tasks and supporting students.

We also found that on many tasks, students in the TIPP&SEE
group with low scores on cognitive markers of short-term memory
and long-term retrieval performed as well as their average peers
on CS/CT tasks. Students who experience poverty and deprivation
tend to have low scores on theses cognitive markers, which are
often linked with academic underperformance [11, 20, 25, 36, 67].
Students who demonstrate a weakness in these areas may expe-
rience difficulty with developing strategies independently while
studying, difficulty with vocabulary development, and difficulty
simultaneously remembering a comprehension question and inte-
grating previously learned information. TIPP&SEE can provide the
strategic scaffold that “levels the playing field". This “leveling of
the playing field” has been demonstrated with explicit teaching of
meta-cognitive strategies in academic areas including reading, math,
and science [23]. In this study, we see the potential for strategy
instruction as an effective scaffold for young learners in CT/CS.

Forwhich computational thinking concepts doesTIPP&SEE
support students with differing cognitive abilities?
Results were less clear when we took a more detailed look into
specific CT concepts. Most questions had inconclusive results, with

questions covering the same CT concept having inconsistent out-
comes. While students with low cognitive scores were better served
with TIPP&SEE in aggregate, we cannot yet tell in which concepts
TIPP&SEE was more useful for these students. A larger suite of
questions covering a wider variety of learning goals within each
CT concept would be necessary to get a more definitive picture.

Across all our research questions, it was surprising that the
Pair Cancellation subtest, which measures scanning and pattern
recognition, was not associated with CS/CT performance and only
weakly demonstrated a correlation with one Events question. This
leads us to hypothesize that this cognitive skill is not related to the
tasks in this curriculum. Perhaps, these skill is less necessary at the
elementary level but would be more important for more advanced
CS/CT concepts. It may also be the case that this skill does not apply
for younger learners, the CT concepts were not complex enough to
engage this skill, or something else entirely. Future research will
be needed to further investigate this relationship.

8 IMPLICATIONS, LIMITATIONS, & FUTURE
WORK

We discuss the implications, limitations, and future directions with
respect to both research and practice.

8.1 Research
This research is exploratory in nature, with a small number of
items measuring each CT concept and small cell sizes, resulting in
non-normal distributions that required non-parametric analyses.
We performed data analysis on separate question items, but we ac-
knowledge that a better approach would be to analyze item clusters
based on factor analysis. We did not have enough participants or
enough items per construct in order to cluster items with validity.
This limitation is not surprising in computing education research
for young learners. With computing’s largely elective status in ele-
mentary education, there is limited instructional time to devote to
assessments; more question items increase the time spent testing.
Future research should improve upon this instrument with more
question items and more participants. Our results should also be
replicated beyond this study’s context and by other researchers.

While our sample was diverse, all participants attended under-
resourced schools serving marginalized communities, so larger
samples and broader diversity within those samples should be in-
cluded. Additional tests of cognitive abilities may be of interest
as well, including those that investigate oral vocabulary and gen-
eral knowledge to consider vocabulary and prior knowledge, and
analysis-synthesis to examine problem solving skills, and other
measures of cognitive abilities beyond the WJ IV. It is important to
remember that one test of cognitive ability gathered at a single time
point is not a global representation of a student’s working memory,
long-term retrieval, or intelligence. Further, there are several factors
that are not measured by this assessment or other cognitive skill
tests. These factors include curiosity, creative talent, work habits,
and study skills.

Cognitive abilities should be investigated further. Given the re-
sults of this study that demonstrated increased correlations be-
tween memory tasks and CS/CT learning, future study should work
to define the parameters for which TIPP&SEE provides sufficient
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scaffolding for learning. Future research should also identify ad-
ditional challenges and barriers within computer science for this
age group and create and match new strategies to scaffold those
needs. A potential avenue would be cognitive load for students in
this age group, given prior work on cognitive load in university
computing courses [56, 57]. Finally, while TIPP&SEE functioned
very well for students aged 9-10, understanding its applicability to
other grades and developmental levels is imperative. The develop-
ment of additional strategies may be useful to scaffold other CS/CT
concepts/content.

8.2 Practice
TIPP&SEE is a novel strategy that has been developed and tested for
use in elementary CS/CT learning. Measures of teacher fidelity of
implementation were not explored, leaving the possibility that some
results may be attributed to teacher effects. TIPP&SEE is presented
in combination with a Use–>Modify–>Create approach, and some
outcomes may be influenced by the contributions of this model
rather than TIPP&SEE alone. The components of TIPP&SEE have
not been disaggregated and tested. Therefore, it is unknown which
aspects of TIPP&SEE make the greatest contributions and if any
aspects are not critical to the model. Previous research has demon-
strated that when instructed using a Use–>Modify–>Create in-
structional sequence scaffolded by TIPP&SEE, students who under-
performed academically on state assessments, including diverse
learners such as students with disabilities, students from marginal-
ized communities, and multilingual students, performed as well as
typically developing peers [76]. The findings of this study provide
additional support for the use of TIPP&SEE for elementary student
CS/CT learning given the predictive qualities of tests of cognitive
abilities for under-performance in academic tasks. The results of
this study also demonstrates that for most students of lower measur-
able cognitive abilities, TIPP&SEE helped to level the playing field,
allowing them to participate fully in the general CS/CT curriculum.
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