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ABSTRACT
With the rise of Computational Thinking (CT) instruction at the ele-

mentary level, it is imperative for elementary computing instruction

to support a variety of learners. TIPP&SEE is a meta-cognitive learn-

ing strategy that scaffolds student learning when learning from

example code. Results from a previous study show statistically-

significant performance differences favoring students using the

TIPP&SEE strategy on a written assessment [43].

In this work, our goal is gain insight as to why such dramatic

learning differences may have occurred. We analyze the students’

computational artifacts and TIPP&SEE worksheets. Artifact analy-

sis reveals that students in the TIPP&SEE group are more thorough

in their work, completing more elements of the required tasks. In

addition, they build open-ended projects with longer scripts that

utilize more learned blocks. Worksheet analysis shows that stu-

dents were highly accurate on some types of questions but largely

skipped others. Despite these positive behaviors, there was little sta-

tistical correlation between student worksheet correctness, project

completion, and written assessment performance. Therefore, while

students in the TIPP&SEE group performed actions we believe lead

to more success, no individual actions directly explain the results.

Like other meta-cognitive strategies, the value of TIPP&SEE may

lie in cognitive processes not directly observable, and may vary

based upon individual student differences.
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1 INTRODUCTION
With the introduction of computer science (CS) instruction at the

upper elementary school level (ages 8-12) in an increasing number

of countries, such as Israel, India, and the United States [22], a broad

population, that may not have had such opportunities previously,

are getting access to CS. However, access is necessary but not

sufficient for equity. As gains are made in access, it is crucial that

we better understand how broad populations respond to different

pedagogical approaches.

There are popular curricula that follow several different ped-

agogical approaches for young learners (ages 8-12). Code.org’s

curriculum features structured, puzzle-based instruction, with a

series of carefully-chosen puzzles in increasing difficulty that focus

on a single programming construct at once. On the other side of

the spectrum, the Creative Computing Curriculum takes a Con-

structionist approach, with every activity having broad goals (e.g.

introducing oneself) starting from a blank page.

The Use–>Modify–>Create [29] approach represents a middle

ground, trading off betweenmore structured activities (Use–>Modify

tasks starting with example code) and open-ended activities (Cre-

ate). In the Use–>Modify task, students are first provided with a

functional example to explore how the construct works. They then

perform some small modification to the example before tackling a

more open-ended problem in which they apply this new knowledge

to their own project.

Previous research introduced TIPP&SEE, a learning strategy for

use during Use–>Modify activities, and showed that students learn

computational thinking concepts better when using the TIPP&SEE

learning strategy. In this paper, our goal is to explorewhy this might

be. In particular, we ask three research questions:

• To what degree do students follow the TIPP&SEE protocol,

and how accurately can they answer the posed questions?

• How does using the TIPP&SEE learning strategy affect stu-

dent behavior during the completion of Use–>Modify and

Create tasks?

• Are there any statistical correlations between behavior on

the TIPP&SEE worksheets or project attributes and written

assessment performance?

In the following section, we describe the TIPP&SEE learning

strategy and the dramatic out-performance from students using

this strategy that motivated this study. In section 3, we outline the

different theories that ground the design of our curriculum, strategy,

and study. In section 4, we delineate research that this study builds

upon and in section 5, we detail our methodology. We follow with a

presentation of our results in section 6 and discuss them in section

https://doi.org/10.1145/3372782.3406257
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Figure 1: TIPP&SEE Learning Strategy

7. We conclude in section 8 and delineate this study’s limitations in

section 9.

2 TIPP&SEE LEARNING STRATEGY
TIPP&SEE (Figure 1) is a learning strategy that scaffolds student

exploration of provided programs for Use–>Modify activities. The

strategy is specifically designed for use with Scratch, a popular

programming language and development environment used in ele-

mentary schools [15].

Inspired by previewing strategies that are effective scaffolds in

reading comprehension [51], the first half, TIPP, guides students
in previewing different aspects of a new Scratch project before

looking at any code. They first read the Title, Instructions, and the

Purpose of the project to get their attention focused on what they

will be learning during this activity. The extra P is Play, in which

they run the code with very deliberate observations of the events

and actions that occur (Figure 2).

The second half, SEE, draws from text structure strategies from

reading comprehension research [13]. This half involves looking at

the code, and begins with students pressing the SEE INSIDE button

in the Scratch programming interface. SEE provides a roadmap for

finding code in the Scratch interface (clicking on the sprite and

finding the event). They are asked questions about what they see

in the code (Fig. 3), predicting what role the blocks in the code

played in the actions they observed in the Play step. The last E is

for Explore, in which they are taught how to make changes to the

code (e.g. change parameters of blocks) to learn how a particular

block works. This proceduralizes the process of learning how to

code through deliberate tinkering (Figure 4).

This study is motivated by positive results in previous work [43]

showing that students using TIPP&SEE had significantly stronger

outcomes than control students. In that curriculum, the goal was

for students to form an accurate mental model of a program, as

expressed through Scratch. Like Sorva et al. [47], our definition

Figure 2: Example "Observe" Questions

Figure 3: Example "Predict" Questions

Figure 4: Example "Explore" Questions

Figure 5: Assessment Results motivating this Study

of "understanding" was if students could predict the outcome of a

certain script run by the computer or if students could postulate

which script produced a certain outcome. Analyzed with the Block

model [44], this is a structural understanding of Scratch. In assess-

ments designed for students to demonstrate their understanding,

TIPP&SEE students outperformed control students in questions of

moderate to advanced difficulty. Figure 5 shows performance on

questions related to loops, and student scores are normalized to

the treatment group. Asterisks indicate a statistically-significant

difference in performance between the two groups. Our goal in this

study is to investigate behavioral differences in Use–>Modify–>

Create artifacts and TIPP&SEE worksheets that may have led to

such dramatic performance differences.



3 THEORETICAL FRAMING
The theoretical framing for this work draws on three sources.

The Zone of Proximal Flow grounds our curriculum design, meta-

cognitive strategies ground the design of our learning strategy, and

Bloom’s taxonomy and its variants for computing ground our study

design and data analysis.

3.1 Zone of Proximal Flow
Papert [21], in his work on constructionism, posited that individ-

uals learn best when they are constructing an artifact for public

consumption, emphasizing self-directed learning. However, such a

self-directed approach may not lead to immediate understanding

of the concepts underlying their artifacts [2]. A more moderate

approach is informed by seeking the Zone of Proximal Flow [1],

a combination of Vygotsky’s Zone of Proximal Development the-

ory [52] with Csikszentmihalyi’s ideas about Flow [9]. The Zone

of Proximal Development describes what a student can learn with

external support. In contrast, Flow is internally based; a student

is in Flow when a task is not so challenging that they are over-

whelmed, but not too easy for their skills that they are bored. The

Zone of Proximal Flow refers to inquiry-based scaffolding that

guides students through the Zone of Proximal Development so that

they reach a state of Flow. Zone of Proximal Flow forms the basis

of our instructional and curriculum design.

3.2 Meta-cognitive Strategies
TIPP&SEE is a meta-cognitive learning strategy. Meta-cognition

involves both self-regulation in learning and motivational aspects

of learning. People who are meta-cognitive are reflective and con-

structive in the learning process, thinking about their own think-

ing and using this knowledge to guide both thinking and behav-

ior [12]. These expert learners are strategic and purposeful: es-

tablishing goals, planning, self-monitoring, self-evaluating, giving

self-feedback and correction, and motivating themselves toward

the desired end [39]. In short, expert learners are meta-cognitive

and strategic about their own learning.

However, strategic learning is an internal monitoring system,

and is covert. To a less strategic learner, the "how" of learning is

not obvious, and denies access to both process and content. To pro-

vide equitable learning opportunities, researchers developed and

explored explicit teaching of meta-cognitive strategies, a process

for teaching students how to learn within a content area, histor-

ically reading [26], writing, [18], math [36], and content such as

social studies [10] and science [10]. Most recently, researchers are

investigating the use of learning strategies for elementary computer

science [43].

Learning strategies prompt and scaffold meta-cognitive think-

ing. Learning strategies are techniques, principles, or rules that

enable a student to learn, solve problems, and to complete tasks

independently [11]. The foundational idea of learning strategies is

to support all learners in becoming independent by directly teach-

ing them the processes that expert learners use. Meta-cognitive

learning strategies make the covert activities of expert learners

overt, enabling struggling learners to engage in, practice, and even-

tually internalize ways to guide their own thinking, motivation,

and behaviors to meet learning goals.

Mnemonic devices are one such scaffold. One type of mnemonic

uses an acronym to cue memory and coordinate strategic think-

ing [45]. The mnemonic, TIPP&SEE, cues students to engage pur-

posefully in a series of strategic steps and procedures that are

foundational to higher order thinking skills [39], in this case, for

computer science learning and problem solving.

3.3 Bloom’s Taxonomy for Computing
The original Bloom’s taxonomy defined six major cognitive cate-

gories: Knowledge, Comprehension, Application, Analysis, Synthesis,
and Evaluation [3]. These categories were ordered from simple

to complex and from concrete to abstract. Further, the original

taxonomy represented a strict, cumulative hierarchy. Bloom’s tax-

onomywas later revised to have a second dimension: the knowledge

dimension [28]. The knowledge dimension consisted of the follow-

ing categories: factual, conceptual, procedural, and meta-cognitive.

With two dimensions, the revised Bloom’s taxonomy was no longer

a strict hierarchy, and instead had multiple mastery paths.

With its prominent use in computing, several scholars have pro-

posed modifications to the Bloom’s taxonomy to adapt it to have

two aspects specific to computing: the ability to develop artifacts

being a principal learning objective, and the centrality of studying

process and problem solutions [17]. Johnson et al. [24] proposed

that Bloom’s taxonomy may need a "higher application" level, ap-

plication informed by a critical approach to the subject .

Fuller et al. expanded upon Johnson’s work and proposed the

Matrix Taxonomy: a two-dimensional adaptation of Bloom’s taxon-

omy. The two dimensions of the matrix encompass two different

competencies: the ability to understand and interpret an existing

product, known as the ’Interpreting’ dimension, and the ability to

design and build a product, known as the ’Producing’ dimension.

The levels in the ’Interpreting’ dimension are Remember, Under-
stand, Analyze, and Evaluate, while the levels in the ’Producing’

dimension are Apply and Create. In our study, the Use–>Modify

and Create tasks enable students to demonstrate their ability to

produce code artifacts, with the Use–>Modify task at the Apply
level and the Create task at the highest ’Producing’ level. TIPP&SEE

worksheets and end-of-module assessments allow students to hone

and demonstrate their interpretation abilities, both with whole

projects and individual code snippets respectively. We draw from

these three sources of data to evaluate student behavior while using

the TIPP&SEE learning strategy.

4 RELATEDWORKS
Our study builds upon two flourishing bodies of work: CS education

pedagogy and teaching strategies.

4.1 CS Education Pedagogy
As with other subjects, including literacy [6, 49], computer science

education researchers disagree on the appropriate level of structure

to balance different learning goals. Constructionist curricula are

more focused on, and have been shown to be successful at, increas-

ing awareness and engagement, changing perceptions of computing,

and building self-efficacy, especially for students from underrep-

resented communities in computing in informal contexts [25, 38,

34, 37, 50, 14, 5]. This inspired Scratch to create a repository of



projects which students can "remix" (copy and modify) and assess-

ments geared towards practices [4] and artifact attributes [16, 19,

40], rather than the conceptual understanding we are seeking.

More structured approaches, on the other hand, aim to develop

mental models — an understanding of specific CS concepts and

how the code works [47]. While open-ended exploration may lead

to the ability to create programs, a worthy goal, there is evidence

that its success in teaching mental models is hard to evaluate be-

cause conceptual understanding of their own code is not always

achieved [2], especially compared to a more direct instruction ap-

proach [30]. On the other hand, an overly-structured approach can

dissuade some students (especially females) from continuing in

programming courses [53].

This paper explores amiddle ground, Use–>Modify–>Create [29].

In this approach, students first engage with a concept in a structured

project with provided code, and then make changes as they explore

how the concept is applied.

4.2 Teaching Strategies
Teaching or learning strategies can be independent from the cur-

riculum. There has been recent work on strategies at the K-12 level.

With students ages 15-17, simple debugging strategies (e.g. look at

each instruction closely) were tested with limited success [31]. At

ages 11-14, an instructional approach called PRIMM was found to

be successful. PRIMM involves prediction of the output of example

code as the first step of learning a new concept [46]. In addition, the

Use–>Modify–>Create (UMC) curricular approach, in which stu-

dents learn from example code and modify it before creating their

own projects, was compared to a less scaffolded curriculum. Stu-

dents in the UMC treatment found Use–>Modify (UM) tasks easier

than control students did, and they felt more ownership over larger

projects [33]. Finally, several researchers have provided guidance

and research results on using Universal Design for Learning (UDL)

instructional techniques in elementary computer science instruc-

tion, which posits that learning strategies specifically designed for

some students often help many more and provide guidance and dif-

ferent ways to accommodate students with learning differences [20,

23].

Our work focuses on TIPP&SEE, a learning strategy used with

students aged 9-10, which led to significant performance advan-

tages [43]. This strategy uses careful observation followed by pre-

diction and exploration to familiarize students with example code.

5 METHODS
5.1 School Context
Fifteen teachers were recruited for this IRB-approved study from a

large, urban school district in the United States and underwent the

same professional development to teach the Scratch Act 1 to stu-

dents aged 9-10. A total of 16 classrooms participated in the study,

including six of bilingual (English and Spanish) classrooms. Teach-

ers were randomly assigned to either the TIPP&SEE or the control

condition, resulting in five English-only and three bilingual class-

rooms in each condition. Treatment classrooms used TIPP&SEE

worksheets, whereas control classrooms used worksheets that intro-

duced the overall project andmodify task without stepping students

through the protocol. Lessons were taught by the teacher and as-

sisted by an undergraduate CS student. After excluding students

who switched schools or were chronically absent, there were a

total of 96 and 88 students in the control and TIPP&SEE condition,

respectively, for a total of 184 students.

5.2 Scratch Act 1
Within a semester (approximately 5 months), students completed

Scratch Act 1 [43], an introductory computational thinking (CT)

curriculum modified from the Creative Computing curriculum [8]

consisting of three modules: Sequence, Events, and Loops. Each

module begins with Use–>Modify project(s) and culminates in a

Create project (see Table 1). Each project had a list of requirements

for students to complete. All curriculum materials and assessments

were available in English and Spanish.

Module Project Use–>Modify–>Create

Sequence Name Poem Use–>Modify

Ladybug Scramble Use–>Modify

5-Block Challenge Create

Events Ofrenda Use–>Modify

Parallel Path Use–>Modify

About Me Create

Loops Build a Band Use–>Modify

Interactive Story Create

Table 1: Scratch Act 1 Modules

5.3 Data Analysis
We analyzed three data sources: computational artifacts, TIPP&SEE

worksheets, and topical assessments.

5.3.1 Computational Artifacts. Student Scratch projects were stati-

cally analyzed to extract the completion of requirements in all the

projects. These requirements were listed on their project planning

worksheets. Some requirements were designed to help students

demonstrate the CT concept, while others were designed to en-

courage creativity (Table 2). To see if there were any statistically-

significant differences between the TIPP&SEE and control students

in their requirement completion rates, we used two statistical tests

suitable for our large sample size. When comparing the propor-

tion of students who completed a specific requirement, the two-

proportion z-test was used; we report z and p values. When com-

paring countable code attributes, such as script length, the ANOVA

F-test was used; we report F , p, and effect size η2. η2 measures the

proportion of the total variance in a dependent variable (DV) that

is associated with the membership of different groups defined by

an independent variable (IV) [7]. For example, if an IV has a η2 of
0.25, that means that 25% of a DV’s variance is associated with that

IV. p < .05 was used for statistical significance.

5.3.2 TIPP&SEEWorksheets. Students worked on TIPP&SEE work-

sheets prior to starting the UM projects. Questions were divided

between the three types of questions: Observe (Figure 2), Predict

(Figure 3), and Explore (Figure 4). Answers were transcribed elec-

tronically and analyzed for completion and accuracy. Completion

rates of each question type varied due to classsroom-level factors,

such as instructional time constraints.



Project Requirements

Name Poem Modify at least half the sprites

Modify backdrop

Avg Script Length at least 2

Ladybug Scramble Ladybug eats at least 1 aphid

Use Eat Aphid Block

Use Move Steps Block

Use Turn Block

5-Block Challenge Only use the 5 required blocks

Add new backdrop

Add at least 2 sprites

Ofrenda Modify Say block for at least 1 sprite

Modify at least 1 sprite’s costume

Add interactivity for at least 1 sprite

Parallel Path At least 1 sprite has parallel actions on click

2 sprites have actions on "9" key press

About Me At least 1 sprite

At least 1 interactive sprite

Build a Band Add a script for guitar

At least 1 new sprite

at least 1 new sprite with a script

Cat sprite is animated

Interactive Story Interactive backdrop

At least 1 sprite with a script

At least 1 event block

At least 1 loop block

Table 2: Scratch Act 1 Project Requirements

5.3.3 Assessments. Students also took two pen-and-paper assess-

ments, one each after Module 2 (events & sequence) and Module 3

(loops). Assessment design was guided by the Evidence-Centered

Design Framework [35]. Domain analysis was informed by the CS

K-12 Framework and Rich et al’s K-8 learning trajectories for ele-

mentary computing [41]. These overarching goals were narrowed in

domain modeling to identify specific knowledge and skills desired.

The questions were designed by a team of CS and education

researchers and practitioners. Questions were then evaluated by

more practitioners and a reading comprehension expert, and tested

with students from the previous school year for face validity.

Cronbach’s alpha (α ) was also calculated for internal reliability

between questions on the same topic. Between the questions and

sub-questions on both assessments, there were 5 items on events

(α=.72), 4 items on sequence (α=.7), and 9 items on loops (α=.85).
A question with parallel loops was excluded in the reliability cal-

culation because its inclusion lowered the reliability of the loops

questions (α=.82), suggesting that it was not testing the same con-

cepts as the other questions. Analysis revealed an understanding of

the concept of parallelism, instead of loops, was likely more crucial

to answering this question correctly.

To see if either project requirement or TIPP&SEE worksheet

completion rates were correlated with assessment scores on indi-

vidual questions, the Spearman’s rank correlation coefficient (ρ)
was calculated. Spearman’s correlation was used as some of our

metrics were on an ordinal, not an interval scale. This test also

yields a p value for statistical significance.

Figure 6: Requirement Completion Rate across Condition

6 RESULTS
We explored student behavior through their artifacts, worksheets,

and assessments. Artifact analysis allows us to compare the behav-

iors of control classrooms to treatment classrooms. Their artifacts

were examined for attributes that indicated the fulfilment of the

project requirements. Treatment classrooms’ TIPP&SEEworksheets

were inspected for the completion of the Observe, Predict, and Ex-

plore phases. Finally, artifact attributes, worksheet correctness, and

worksheet completion rates were analyzed for any correlations

with assessment scores.

We present three sets of results: artifact attributes, TIPP&SEE

worksheets, and correlations between data sources. Within each

section, we highlight important individual findings alongside pre-

sentation of the evidence for those findings. We then discuss the

findings with respect to each other and the original research ques-

tions in Section 7.

6.1 Artifact Attributes
We compared the attributes of student projects in two ways: (1)

across condition (control vs TIPP&SEE) and (2) across individual

classrooms. Each student project was created in the context of either

a Use–>Modify or Create activity in the curriculum. Control and

treatment students had different worksheets for Use–>Modify ac-

tivities, but identical materials for Create activities. We first present

the overall results, then we present select detailed results.

6.1.1 Overall Results. Figure 6 depicts overall requirement com-

pletion rate across the entire curriculum. For each project, the left

(blue) bar shows control, and the right (red) bar shows the treatment

results.

Finding 1: TIPP&SEE students satisfied either the same or higher
percentage of requirements than the control students.

TIPP&SEE students were more likely to complete all the project
requirements for 5-Block Challenge (z = 10.25,p < .01), Ofrenda
(z = 9.34,p < .01), Parallel Path (z = 9.34,p < .01), and About



Figure 7: Per-Classroom Overall Requirement Completion

Me (z = 6.12,p < .01). Table 3 shows the individual require-

ments for each project where TIPP&SEE students had a statistically-

significantly higher completion rate.

Project Attribute z
Ladybug Ladybug eats 1 aphid 2.47*

Scramble

5 Block Used 2 specified blocks 5.63**

Challenge Used 4 specified blocks 4.81**

Used all 5 specified blocks 3.46**

Ofrenda 1 interactive sprite 2.47*

More than 1 interactive sprite 2.12*

All sprites with a different costume 3.42**

All sprites have a different Say block 3.63**

Parallel 1 sprite with parallel actions on click 7.46**

Path 2 or more sprites with parallel actions on click 6.57**

1 sprite acts on “9" key press 6.77**

2 or more sprites act on “9" key press 6.06**

About Me Has a Say block 2.38*

Has an interactive sprite 3.51**

Build Modified scripts for at least 1 sprite 3.24**

a Band

Interactive Interactive Backdrop 2.23*

Story Using at least 10 blocks 2.19*

* p < .05 ** p < .01

Table 3: Attributes with Significant TIPP&SEE Outperfor-
mance

Finding 2: Completion rates varied for different classrooms, and
with substantial overlap between treatment and control classrooms.

Figure 7 breaks down the overall results by classroom, ordered

by percentage of requirements completed. We can see that not all

treatment classrooms complete more requirements than all control

classrooms. However, it is clear that treatment classrooms did better

in general.

Finding 3: Individual requirements with higher completion rates
by control students do not utilize as much coding.

While TIPP&SEE students fulfilled more requirements than con-

trol students overall, there were some requirements that more con-

trol students completed. These exceptions were mostly in super-

ficial, not programming-related, requirements. For Name Poem, a

greater proportion of students in the control condition changed

the backdrop. In Build a Band, a larger percentage of control stu-
dents added a new sprite and added new blocks that would ani-

mate the Cat sprite that was already in the example project, with

the difference in adding a new sprite being statistically signifi-

cant (z = 2.64;p < .01). TIPP&SEE students outperformed control

students in requirements that were programming-related, as show-

cased in the 5-Block Challenge,Ofrenda, Parallel Path, and Interactive
Story projects.

Discussion. Overall, we see that students in treatment classrooms

not only completed more elements (Finding 1) but focused more on

programming elements (Finding 3). This shows that one purpose of

the learning strategy andworksheets - to help students complete the

projects - was successful. Our initial hypothesis was that, overall,

completing more of the projects will lead to better performance on

written assessments, a correlation we explore in Section 6.3.

6.1.2 Per-Project Results. We now examine more closely a subset

of the projects. Ofrenda was chosen because it represents typical

behavior for a project on which students generally did well on the

written assessment for both control and treatment groups. 5-Block
Challenge and Parallel Path were chosen because they were re-

designed based on analysis of the previous year’s student work and

written assessments. Finally, Interactive story was chosen because

it is the culminating project for the curriculum. Ofrenda and Paral-
lel Path are Use–>Modify projects, whereas 5-Block Challenge and
Interactive Story are Create projects. We want to find out whether

students completed these projects differently according to their

group.

Ofrenda. Inspired by the Mexican holiday Día de los Muertos

(Day of the Dead), the Ofrenda Use–>Modify project presented stu-

dents with three ancestors as sprites. Students were then prompted

to modify the project by adding their family members as sprites

and making them interactive. There are three requirements in the

Modify task, two requiring coding (Interaction and Speaking), and

one involving changing the sprites’ costumes.

In order to illustrate student behavior, we distinguish between

fulfilling the requirement on a single sprite (practicing it once) and

on all of the sprites (practicing it and completing the assigned task).

Figure 8 depicts the results, with the top (red) portion of the bar

showing the percentage of students who completed the task for a

single sprite, and the bottom (blue) portion of the bar showing the

percentage who completed the task for all sprites.

Finding 4: More treatment students completed requirements for at
least one sprite as well as for all sprites.

The total height of the bars are higher for treatment students, in-

dicating more completion of any sprite, as well as the bottom (blue)

portion of the bar, indicating all sprites. This implies that students

both demonstrate some understanding and are potentially more

thorough in their work when following the TIPP&SEE strategy and

worksheets. A statistical analysis revealed that TIPP&SEE students

outperformed control students in making both one (z = 2.47,p <



.05) and all sprites (z = 2.12,p < .05) interactive, changing all

sprites costumes (z = 3.42,p < .01), and making all sprites speak

(z = 3.63,p < .01). This indicates that TIPP&SEE students better

demonstrated their ability to apply their knowledge of Events.

Figure 8: Ofrenda Completion Rate across Conditions

5-Block Challenge. The 5-Block Challenge Create project, with
identical materials for both groups, prompts students to create a

project using only 5 blocks: When this Sprite Clicked, When
Green Flag Clicked, Wait, Say, and Glide. The goal is twofold:
encourage students to build with blocks they haven’t been explic-

itly taught, and encourage students to create scripts with multiple

action blocks rather than lots of scripts with a single action block.

This project was modified from the 10-Block Challenge because

analysis of previous years’ student artifacts (including final projects)

revealed few scripts contained more than a single action block.

Finding 5: Students in treatment classes created longer scripts, on
average, than control classrooms during the 5-Block Challenge.

We analyzed two major statistics, shown in Figure 9. First, we

calculated the average script length in each student’s artifact. Sec-

ond, we calculated the length of the longest script in each student’s

artifact. We can see that treatment classrooms, on average, create

longer scripts, with treatment students creating scripts with 5.22

blocks and control students with 3.97 blocks (F (1, 196) = 9.01,p <
.01,η2 = .044). This means that treatment students, in general,

went beyond the minimal two blocks per script to create sequen-

tial scripts. The mean maximum was slightly higher in the control

groups, at 7.45 vs. 6.27, due to students with incredibly long scripts

(over 45 blocks) in one classroom, whereas the median maximum

script length was higher in the treatment groups. However, an

analysis of variance of the maximum script lengths between the

two conditions showed that these differences were not statistically

significant (F (1, 196) = 1.37,p = .24). Therefore, in general, stu-

dents in the treatment group created at least one script that was

of non-trivial length, showing more practice at creating sequential

scripts.

Finding 6: Students in treatment classes used more required blocks,
on average, during the 5-Block Challenge.

The left bars on Figure 10 shows the percentage of students who

used different numbers of the required blocks. The best case would

be entirely blue bars, in which all students utilized all 5 blocks. A

majority of treatment students used 4-5 blocks, whereas a majority

of control students used 2-3 blocks. While students in the control

condition were more likely to use only two specified blocks (z =
5.63,p < .01), students using TIPP&SEE used more of the specified

blocks. A statistically-significantly greater proportion of treatment

students used four (z = 4.81,p < .01) and five (z = 3.46,p < .01)
blocks. Along the Matrix Taxonomy, higher block usage by the

TIPP&SEE students suggests that they were better able to create
artifacts in the context of a cumulative project on Sequence.

Figure 9: Block Lengths across Condition

Figure 10: Block Use for 5-Block Challenge (left) & Interac-
tive Story (right)

Parallel Path. The Parallel Path Use–>Modify project was created

in response to poor student performance on written assessment

questions involving parallel versus sequential code. The project

presents students with two sprites that had actions either in se-

quence or in parallel, depending on which number they pressed.

The TIPP&SEE worksheet had students identify what actions were

sequential vs parallel and then inspect the corresponding code.

Students were then asked to modify the project such that upon a

mouse click, each sprite would do two actions in parallel, and when

the number ’9’ key was pressed, both sprites would do an action in

parallel. These results are shown because they represent the most

staggering difference in behavior between the two groups.

Finding 7: A significantly larger percentage of TIPP&SEE students
satisfied the requirements of Parallel Path than the control group.



Figure 11 depicts the percentage of students who completed each

requirement. It shows that there was no single requirement that

20% of control students completed, yet for all requirements, at least

45% of TIPP&SEE students completed them. In fact, less than 25%

of students in the control group completed any single requirement.

In contrast, almost 75% of TIPP&SEE students completed a single

requirement, and over 50% of these students completed the entire

project. TIPP&SEE students significantly outperformed the control

students in every requirement: programming 1 sprite (z = 7.46,p <
.01) and at least 2 sprites (z = 5.67,p < .01) to do two parallel

actions on click, programming 1 sprite (z = 6.77,p < .01) and at

least 2 sprites (z = 6.06,p < .01) to act when the ’9’ key is pressed.

TIPP&SEE students were also more likely to fulfil all requirements

(z = 6.67,p < .01). The TIPP&SEE students’ better performance is

especially noteworthy because parallelism is a concept with which

students commonly struggle [27, 32].

Figure 11: Parallel Path Completion Rate across Conditions

Interactive Story. Interactive Story is the culminating Create project

in this curriculum, designed to encourage students to demonstrate

their knowledge of the three CT concepts covered: events, sequence,

and loops.

The right two bars of Figure 10 illustrate the number of unique

blocks that students utilize in their final projects. A greater per-

centage of the control group used fewer distinct block types, while

the TIPP&SEE group used more distinct block types. Most notably,

TIPP&SEE student projects were more likely to have at least 10

unique blocks relative to the control student projects (z = 2.19,p <
.05). Further, TIPP&SEE students outperformed the control students

in using either the switch backdrop or when backdrop changes
block to make their backdrop interactive (z = 2.23,p < .05).

6.2 TIPP&SEE Worksheets
We now turn our attention to analysis of the TIPP&SEE worksheets.

These worksheets were completed only by students in the treatment

group; the worksheets for control students presented the project

and had the modify tasks listed, but they did not have a set of

questions for students to answer.

All figures in this section break up student responses into four

categories: Correct, Incorrect, Blank, and No Sheet. The distinction

between Blank and No Sheet is that a Blank answer was collected

but was not answered by the student, whereas No Sheet indicates

that we are missing the entire worksheet for that student.

We begin by exploring student behavior on different types of

TIPP&SEE questions. There are three categories of questions we

analyzed. The Observe questions are first, asking students to record

their observations from running the provided project. All work-

sheets have Observe questions. The other two question categories

are only on a subset of worksheets. Predict questions ask students

to look at the code and predict what blocks caused which actions

they observed. Explore questions have two parts. First, make a

change to the code and run it, such as changing the number in

the wait block. Next, record what happened in response, such as

whether the sprite moved faster or slower. There are other question

categories, but these are the three we analyze.

Figure 12: TIPP&SEEWorksheet Responses across Question
Types

Finding 8: A majority of students completed and correctly answered
Observe and Predict questions, while Explore questions were largely
left blank.

Figure 12 shows the percentage of students that completed and

correctly answered questions across all TIPP&SEE worksheets,

sorted by the type of question. It shows that, overall, there were few

incorrect answers. However, a majority of students did not record

answers to Explore questions.

It is unclear if the reason for skipping Explore questions was

because students did not follow the Explore prompt or because

they did not record their observations. There are several reasons,

however, that students could have skipped them. First, because

explore questions were only included in a few projects, following

and recording explore prompts may not have become a routine. On

a related note, students may have needed more scaffolding with

this type of questions, requiring the teacher to model and practice

them. In addition, making code changes is a more difficult task

than merely answering a question about what one observes or

is thinking, so this may have been cognitively difficult for some

students.



Figure 13: Ladybug Scramble Worksheet Correctness vs
Project Completion

Figure 14: Parallel Path Worksheet Correctness vs Project
Completion

6.3 Correlations between Projects, Worksheets,
and Assessments

Having analyzed assessments [43], project completion, and work-

sheets independently, we now investigate relationships between

them.

6.3.1 Worksheets vs Projects. We begin by analyzing correctness

and completeness of TIPP&SEE worksheets compared with require-

ment completion on the projects. Only Use–>Modify activities have

worksheets. Our question is, does higher completion or correct-

ness of worksheet questions correlate with higher requirement

completion on modify tasks?

Finding 9: There was very little correlation between TIPP&SEE
worksheets and project completion.

The only UM project with any correlation between worksheet

correctness and project completion was Ofrenda (ρ = .33,p < .05).
For the rest of the projects, the distribution of these metrics per

student fell into two broad categories. In the first category, work-

sheet correctness and requirement completion rates were scattered

all over the place, such as Name Poem and Ladybug Scramble (Fig-
ure 13). In the second category, these metrics were concentrated in

the right half of the plot (i.e. at least 50% worksheet correctness),

but do not follow any pattern beyond that, such as Parallel Path
(Figure 14) and Build a Band.

6.3.2 Worksheets and Projects vs Assessments. We now consider

any correlations between worksheet completion, worksheet cor-

rectness, project completion, compared with written assessments.

Finding 10: There was very little correlation between project at-
tributes, worksheets, and assessments.

The correlations that were statistically significant were rela-

tively weak and came from the Name Poem, Ladybug Scramble, and
Ofrenda projects.

In Name Poem , the first Sequence Use–>Modify Project, there

was a weak correlation between requirement completion and scores

on a question from the Events and Sequence assessment (ρ =
.33,p < .05). This question showed two sprites with Say bubbles

on the Scratch stage, triggered by clicking the green flag. Students

were then asked to identify the script that belonged to one of the

sprites.

In Ladybug Scramble , the second Sequence Use–>Modify Project,

there were weak correlations between TIPP&SEE worksheet com-
pletion and a two-part question on Events and Sequence (a: ρ =
.33,p < .05, b: ρ = .34,p < .05). This question presented students

with a script; the first part asked students to identify the event that

triggered the script and the second part asked students to describe

the sequence of blocks in the script. There was also a weak correla-

tion between the second part of this question and the overall project

completion rate (ρ = .32,p < .05). We also found weak correlations

between worksheet correctness and two questions: one asked stu-

dents to identify the last Say block in a script (ρ = .40,p < .01) and
another asked them to identify the scripts triggered by the Green
Flag(ρ = .34,p < .05).

7 DISCUSSION
We now revisit our overarching research questions and relate our

individual findings to these questions.

To what degree do students follow the TIPP&SEE protocol, and how
accurately can they answer the posed questions?

Students follow the Observe andModify closely and, for the most

part, answer the questions accurately. A majority of students, how-

ever, do not complete the Explore questions when they are present.

We cannot tell if students were truly disengaged from the Explore

questions or if students were exploring implicitly, which can occur

with metacognitive strategies. Therefore, further research should

address either improving the participation for Explore questions or

determining that they are not useful for student learning.

How does using the TIPP&SEE learning strategy affect student
behavior during the completion of Use–>Modify and Create tasks?

There was a significant difference in behavior, overall, between

control and treatment students. We had findings on a variety of mea-

sures, including project requirement completion, length of scripts,

and required block usage. The results from Parallel Path are particu-

larly staggering, with treatment students completing requirements

at about 8-10 times the rate of control students. Students in the

treatment group stayed on task much better than control students,

even on Create projects in which the materials were identical. This

finding suggests that treatment students were more capable of ap-

plying their new knowledge, the first ‘production’ step in theMatrix

Taxonomy, and that they benefited from the Zone of Proximal Flow

encouraged by the curriculum design. In addition, when looking at



the 5-Block Challenge and Interactive Story results, TIPP&SEE stu-

dents were better able to create more complex projects, the highest

‘production’ level in the Matrix Taxonomy.

This leads to an interesting question - is TIPP&SEE a learning

strategy or an instructional strategy? We have strong evidence that

it leads to positive outcomes from an instructional perspective. That

is, when students follow this sequence of actions, mediated by a

worksheet, it leads to positive outcomes. However, whether the

students internalize this into a sequence they can complete with-

out the worksheet, which would make TIPP&SEE a meta-cognitive
learning strategy, is a question this study does not address. The

cognitive aspects are harder to measure, and therefore harder to

evaluate.

Are there any statistical correlations between behavior on the
TIPP&SEE worksheets or project attributes and written assessment
performance?

We find very few statistical correlations between any of the

behavioral measures: individual requirement completed, percentage

of requirements completed, worksheet questions completed, and

individual written assessment question performance.

The lack of correlations between project attributes and assess-

ments is not entirely surprising. On the Matrix Taxonomy, project

attributes reflect the ’Producing’ dimension, while assessments

reflect the ’Interpreting’ dimension; it is possible for both dimen-

sions to develop independently [17]. Further, Brennan et al. [4]

have shown that students frequently use code that they do not

fully understand. Another prior study also revealed that student

artifacts can have false positives, where students use code that they

do not understand, and false negatives, where students understand

a concept but do not use related code constructs [42]. Students may

have run out of time to include these code constructs or simply did

not see the need for those constructs in their projects.

In contrast, the fact that the worksheet behaviors (both complete-

ness and correctness) were hardly correlated with the assessments

was more unexpected, as both reflect the same ’Interpreting’ dimen-

sion of the Matrix Taxonomy. Previous studies have found relation-

ships between formative activities or assignments and learning in

Scratch [19, 48]. These activities and assignments varied widely in

structure. Even within our curriculum, the TIPP&SEE worksheets

differed in structure as well. The influence of TIPP&SEE worksheet

design on learning merits further exploration.

8 CONCLUSIONS
This study sheds light on the behaviors of students using TIPP&SEE.
There was a significant difference in behavior, overall, between con-

trol and treatment students. We had findings on a variety of mea-

sures, including project requirement completion, length of scripts,

and required block usage. Students in the treatment group are better

able to stay on task, either because their learning has been scaf-

folded well or because TIPP&SEE provides structure for their work.

However, not all of the aspects of the TIPP&SEE strategy were suc-

cessful. In particular, a subset of Use–>Modify projects had explore

questions to scaffold learning by making changes in code. However,

a majority of students did not answer those questions. Finally, there

were little to no correlations between individual student acts, such

as performance on worksheets, project requirements, and written

assessments. In the end, worksheets and project work are imperfect

measurements of what knowledge already exists or is being created

within a student’s mind.

9 LIMITATIONS
While this study had a fairly large sample size, we only analyzed

submitted work - worksheets computational artifacts, and assess-

ments. However, data beyond that, such as time-on-task, teacher

interviews and classroom observations, were not rigorously ana-

lyzed for this study. Further, although we balanced the language of

instruction and teacher experience in each condition, our teachers

came from different schools and may differ slightly in the way they

teach the curriculum. Therefore, while we can observe similarities

or differences, the reasons for these differences might be further

illuminated through additional data analysis.

In addition, learning strategies are meant to teach cognitive

processes that are invisible to the observer. We cannot tell whether

something like the Explore prompts were useful because they made

students think in a certain way (despite them not recording results).

We also cannot tell if the prompts were not helpful because either

students would already have thought that way without the prompt

or students ignored them.
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