
Personalized Assessment Worksheets for Scratch (PAWS):
Exploring a Bridge between Interviews, Written Assessments,

and Artifact Analysis
Jean Salac

University of Chicago

Chicago, IL, USA

salac@uchicago.edu

ABSTRACT
The computer science community has struggled to assess student
learning, especially at the early elementary level. Prior work has
included one-on-one interviews, written assessments, and artifact
analysis, each with their own benefits and drawbacks. Through
our Personalized Assessment Worksheets for Scratch (PAWS) tool,
we explore personalized assessments as an assessment technique
that lies in between interviews, written assessments, and artifact
analysis. PAWS creates personalized written assessments that inte-
grates code from student Scratch projects. We hope that our PAWS
tool, and more generally personalized assessments, will lead to
an assessment technique that is both more accurate than written
assessments and artifact analysis, and less time-consuming than
interviews.

KEYWORDS
K-8 education, assessment, Scratch, computational thinking

ACM Reference Format:
Jean Salac. 2019. Personalized Assessment Worksheets for Scratch (PAWS):
Exploring a Bridge between Interviews, Written Assessments, and Artifact
Analysis. In Proceedings of ACM International Computing Education Research
Conference (ICER 2019). ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3291279.3339428

1 MOTIVATION & KEY IDEAS
Many countries worldwide are integrating Computer Science (CS)
and Computational Thinking (CT) instruction into their K-8 school
systems, including the United States, New Zealand, Israel, and In-
dia [7]. Moving from the informal, optional domain into the formal
school classroom increases the pressure on developing accurate
assessment techniques that match the pedagogical approaches and
tools used for this age group.

A popular programming language and development environ-
ment used in elementary school is Scratch [4]. Three assessment
techniques are common in this realm: analyzing the programs that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICER 2019, Aug 2019, Toronto, Canada
© 2019 Association for Computing Machinery.

ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.1145/3291279.3339428

students create, giving written assessments, and interviewing stu-

dent. Each has their own benefits and drawbacks, detailed in the

next section. With our PAWS tool, we explore the space between

interviews, written assessments, and artifact analysis. The ultimate

goal is to create written assessments that allows students to demon-

strate their understanding of code both present and not present in

their artifacts. Our research seeks to answer two research questions:

• How should personalized questions and student code selec-

tion criteria be designed?

• How does integrating a student’s code from their artifacts

affect how they answer written assessment questions?

2 RELATEDWORKS
We provide background on three methods of assessment: artifact

analysis, written assessments, and interviews.

There is a wealth of literature on artifact analysis, including

Scrape [12], Hairball [2], and Dr. Scratch [10]. However, any tech-

nique focused on artifact analysis assumes that students understand

the code they use in their projects. This is not necessarily true, as

identified by Brennan [3]. Students can use code in their projects

that they do not truly understand, either by copying exact code

they were taught or remixing from the Scratch community. Writ-

ten assessments or interviews are necessary to find out whether

students understand the concepts both included and not included

in their code.

Traditional written assessments are frequently used to assess

student learning in Scratch, both in the school [6, 9] and the ex-

tracurricular setting [5, 8]. However, while several groups have used
written assessments, they have not been validated, so they may not

measure what they are intended to measure. Very few validated as-

sessments exist, and those that do are designed for older audiences,

such as college-level CS1 students [11], and middle school students

students [1].

Interviews provide a more nuanced and personalized way of

assessing student learning. Brennan and Resnick found that through

artifact-based interviews, they were able to identify the depth of

a student’s understanding of a particular concept and assess how

students were employing computational thinking practices while

developing their projects [3]. While interviews can provide a more

complete picture of student learning, they are very time-consuming,

making them unrealistic for teachers who are already very time-

constrained.

Our PAWS tool builds upon previous research in assessing stu-

dent learning by exploring personalized written assessments that

Doctoral Consortium Abstract ICER '19, August 12–14, 2019, Toronto, ON, Canada

351

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

use code snippets from student artifacts as a possible bridge be-

tween the three methods of assessment.

3 RESEARCH APPROACH & METHODS
3.1 PAWS Tool
Our PAWS tool searches Scratch projects for code snippets that are

"suitable" for personalized questions. These code snippets have to

meet different sets of requirements for each question in order to

be "suitable". If suitable code exists in the student project, PAWS

randomly assigns the student a personalized question using their

code snippet or code from a generic question to allow for compari-

son between the personalized and generic questions. Designed to

take students about 20 to 30 minutes to complete, PAWS assess-

ments consist of multiple-choice, fill-in-the-blank and open-ended

questions.

3.2 Question Design
At the crux of designing questions using students’ own code is this

research question: How do we design questions that assess student
understanding of their code, as opposed to their memory of the code
execution? One-on-one interviews face similar challenges, where

students are recalling what their code did, as opposed to reading

the code presented to them [3].

Multiple-choice and fill-in-the-blank questions may ask students

to predict the outcome of a code execution. If code were to be

used verbatim from student projects, students may just remember

the code execution, instead of actually tracing the code. Similarly,

students answering an open-ended question about their own code

may draw from their memory of their code when describing it.

We would like to discuss our question design and code selection

criteria with DCmentors and attendees to get different perspectives

regarding this challenge.

3.3 Research Design
At least three schools will be chosen to participate, each with dif-

ferent academic performance levels and diversity of student body.

Students in 3rd grade will complete learning modules for sequence,

events, and loops, whereas students in 4th and 5th grade will com-

plete learning modules for conditionals. Assessments will be given

at the end of the (1) events and sequence, (2) loops, and (3) condi-

tionals modules.

In one mid-performing classroom for each grade, a separate

interview-based personalized assessment will be created, and an

interviewer will ask students about their code to assess the level of

understanding of their code and the concepts involved. Interview

questions will only be asked about code pertaining to the concepts

covered in the assessment.

Both quantitative (i.e ANOVA, correlation, etc) and qualitative

analysis (i.e. content analysis) methods will be used. Analysis will be

performed on several pieces of data: (a) presence of code constructs

in projects, (b) complexity of use of code constructs in projects,

(c) performance on written assessment (generic questions), (d) per-

formance on written assessment (personalized questions), and (e)

knowledge demonstrated in interviews.

4 PROGRESS THUS FAR
In the 2017-18 school year, we launched an initial trial of PAWS in

14 classrooms from 4 schools in a large, urban school district, for a

total of 296 4th-grade students. PAWS was used for two modules

in their CT curriculum – one module on events and sequence, and

another on loops.

For the current school year (2018-19), we revised our assess-

ments on events and sequence, and loops, as well as the selection

criteria for student code, based on the lessons learned from the

previous school year. We have also developed a generic assessment

for conditionals, which will be piloted in a few classrooms. After

this pilot, we will revise the assessment questions and develop the

personalization component.

Due to the enthusiastic student reception from seeing their own

code in the assessments in the first year, 26 classrooms from 6

schools are now using PAWS. We are planning on submitting an

experience paper to SIGCSE 2020, detailing the lessons learned

from both initial trial years. The assessments from our initial trial

have not been validated yet, but we are in the process of recruiting

an assessment validation expert.

REFERENCES
[1] Min W. Wiebe E. Mott B. Boyer K. E. Lester J. Akram B. “Assessing Middle

School Students’ Computational Thinking Through Programming Trajectory

Analysis”. In: Proceedings of the 50th ACM technical symposium on Computer
science education. ACM. 2019, p. 1269.

[2] Bryce Boe et al. “Hairball: Lint-inspired Static Analysis of Scratch Projects”. In:

Proceeding of the 44th ACM Technical Symposium on Computer Science Education.
SIGCSE ’13. Denver, Colorado, USA: ACM, 2013, pp. 215–220. isbn: 978-1-4503-

1868-6. doi: 10.1145/2445196.2445265. url: http://doi.acm.org/10.1145/2445196.

2445265.

[3] Karen Brennan and Mitchel Resnick. “New frameworks for studying and as-

sessing the development of computational thinking”. In: Proceedings of the 2012
annual meeting of the American Educational Research Association, Vancouver,
Canada. Vol. 1. 2012, p. 25.

[4] Louise P Flannery et al. “Designing ScratchJr: support for early childhood learn-

ing through computer programming”. In: Proceedings of the 12th International
Conference on Interaction Design and Children. ACM. 2013, pp. 1–10.

[5] Diana Franklin et al. “Assessment of computer science learning in a scratch-

based outreach program”. In: Proceeding of the 44th ACM technical symposium
on Computer science education. ACM. 2013, pp. 371–376.

[6] Michal Gordon, Assaf Marron, and Orni Meerbaum-Salant. “Spaghetti for the

main course?: observations on the naturalness of scenario-based programming”.

In: Proceedings of the 17th ACM annual conference on Innovation and technology
in computer science education. ACM. 2012, pp. 198–203.

[7] Peter Hubwieser et al. “A global snapshot of computer science education in

K-12 schools”. In: Proceedings of the 2015 ITiCSE on working group reports. ACM.

2015, pp. 65–83.

[8] Colleen M Lewis and Niral Shah. “Building upon and enriching grade four

mathematics standards with programming curriculum”. In: Proceedings of the
43rd ACM technical symposium on Computer Science Education. ACM. 2012,

pp. 57–62.

[9] Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari. “Learning

computer science concepts with scratch”. In: Computer Science Education 23.3

(2013), pp. 239–264.

[10] Jesús Moreno-León et al. “On the Automatic Assessment of Computational

Thinking Skills: A Comparison with Human Experts”. In: Proceedings of the 2017
CHI Conference Extended Abstracts on Human Factors in Computing Systems.
CHI EA ’17. Denver, Colorado, USA: ACM, 2017, pp. 2788–2795. isbn: 978-1-

4503-4656-6. doi: 10.1145/3027063.3053216. url: http://doi.acm.org/10.1145/

3027063.3053216.

[11] Allison Elliott Tew and Mark Guzdial. “Developing a validated assessment of

fundamental CS1 concepts”. In: Proceedings of the 41st ACM technical symposium
on Computer science education. ACM. 2010, pp. 97–101.

[12] Ursula Wolz, Christopher Hallberg, and Brett Taylor. “Scrape: A tool for vi-

sualizing the code of Scratch programs”. In: Poster presented at the 42nd ACM
Technical Symposium on Computer Science Education, Dallas, TX. 2011.

Doctoral Consortium Abstract ICER '19, August 12–14, 2019, Toronto, ON, Canada

352

https://doi.org/10.1145/2445196.2445265
http://doi.acm.org/10.1145/2445196.2445265
http://doi.acm.org/10.1145/2445196.2445265
https://doi.org/10.1145/3027063.3053216
http://doi.acm.org/10.1145/3027063.3053216
http://doi.acm.org/10.1145/3027063.3053216

	Abstract
	1 Motivation & Key Ideas
	2 Related Works
	3 Research Approach & Methods
	3.1 PAWS Tool
	3.2 Question Design
	3.3 Research Design

	4 Progress Thus Far

